Spaces:
Runtime error
Runtime error
from crewai import Agent, Crew, Process, Task | |
from crewai.project import CrewBase, agent, crew, task | |
# from newsletter_gen.tools.research import SearchAndContents, FindSimilar, GetContents | |
from research import SearchAndContents, FindSimilar, GetContents # JB | |
from langchain_anthropic import ChatAnthropic | |
from langchain_groq import ChatGroq | |
from datetime import datetime | |
import streamlit as st | |
from typing import Union, List, Tuple, Dict | |
from langchain_core.agents import AgentFinish | |
import json | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_huggingface import HuggingFaceEndpoint # JB | |
import os | |
# JB: | |
# https://python.langchain.com/v0.2/docs/integrations/chat/ollama/ | |
# LangChain supports many other chat models. Here, we're using Ollama | |
from langchain_community.chat_models import ChatOllama | |
# To get rid of the telemetry error messages, try: | |
# Connection Timeout Error with telemetry.crewai.com #254 | |
# https://github.com/joaomdmoura/crewAI/issues/254 | |
# os.environ["OTEL_SDK_DISABLED"] = "true" | |
os.environ["OTEL_SDK_DISABLED"] = "true" | |
# SUCCES: | |
# DIT LIJKT INDERDAAD DE TELEMETRY ERROR MESSAGES IN DE VS CODE TERMINAL TE VOORKOMEN !!!!!!!!!! | |
# Wel in die terminal nog deze korte messages: | |
# 2024-06-14 02:20:17,425 - 25632 - __init__.py-__init__:1218 - WARNING: SDK is disabled. | |
class NewsletterGenCrew: | |
"""NewsletterGen crew""" | |
# agents_config = "config/agents.yaml" | |
# tasks_config = "config/tasks.yaml" | |
agents_config = "agents.yaml" | |
tasks_config = "tasks.yaml" | |
def llm(self): | |
# llm = ChatAnthropic(model_name="claude-3-sonnet-20240229", max_tokens=4096) # ORIGINAL | |
# llm = ChatAnthropic(model_name="claude-3-sonnet-20240229", | |
# # max_tokens=4096, | |
# cache=True, | |
# api_key="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" | |
# ) # JB | |
# https://console.anthropic.com/dashboard | |
# https://console.anthropic.com/settings/keys | |
# jb_anthropic_key_2_13-06-2024: | |
# ANTHROPIC_API_KEY=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 | |
# https://console.anthropic.com/settings/usage | |
# | |
# BadRequestError: Error code: 400 - {'type': 'error', 'error': {'type': 'invalid_request_error', 'message': 'Your credit balance is too low to access the Claude API. Please go to Plans & Billing to upgrade or purchase credits.'}} | |
# llm = ChatGroq(model="llama3-70b-8192") | |
# https://console.groq.com/docs/rate-limits | |
# llm = ChatGroq(model="mixtral-8x7b-32768") # JB 13-06-2024 - geeft af en toe rate limit errors | |
# IN HF SPACES STREAMLIT APP: BadRequestError: Error code: 400 - {'error': {'message': 'Organization has been restricted. Please reach out to support if you believe this was in error.', 'type': 'invalid_request_error', 'code': 'organization_restricted'}} | |
llm = ChatGoogleGenerativeAI(google_api_key=os.getenv("GOOGLE_API_KEY")) | |
# https://python.langchain.com/v0.2/docs/integrations/chat/ollama/ | |
# supports many more optional parameters. Hover on your `ChatOllama(...)` | |
# class to view the latest available supported parameters | |
# llm = ChatOllama(model="llama3") | |
# llm = ChatOllama(model="mistral:latest") | |
# check if ollama is running and which LLMs can then be used, run this in Anaconda cmd admin window: | |
# ollama list | |
# OUTPUT EXAMPLE: | |
# (newsletter-gen-py3.11) (base) C:\Users\jfhmb\EXA_CREWAI\exa-crewai-master\exa-crewai-master>ollama list | |
# NAME ID SIZE MODIFIED | |
# llama3:latest 365c0bd3c000 4.7 GB 3 days ago | |
# nomic-embed-text:latest 0a109f422b47 274 MB 3 days ago | |
# crewai-llama3:latest d952d07761cd 4.7 GB 10 days ago | |
# llama3:8b 365c0bd3c000 4.7 GB 10 days ago | |
# mistral:latest 61e88e884507 4.1 GB 6 weeks ago | |
# mxbai-embed-large:latest 468836162de7 669 MB 6 weeks ago | |
# | |
# OLLAMA LOGS: | |
# C:\Users\jfhmb\AppData\Local\Ollama | |
# | |
# Running ollama on Hugging Face Spaces #2833 | |
# https://github.com/ollama/ollama/issues/2833 | |
# HUGGING FACE LLMs | |
# https://python.langchain.com/v0.2/docs/integrations/chat/huggingface/ | |
# HUGGINGFACEHUB_API_TOKEN | |
# https://huggingface.co/docs/hub/security-tokens | |
# https://huggingface.co/settings/tokens | |
# %pip install --upgrade --quiet langchain-huggingface text-generation transformers google-search-results numexpr langchainhub sentencepiece jinja2 | |
# 1. Instantiate an LLM | |
# HuggingFaceEndpoint | |
# from langchain_huggingface import HuggingFaceEndpoint | |
# | |
#llm = HuggingFaceEndpoint( | |
# repo_id="meta-llama/Meta-Llama-3-70B-Instruct", | |
# task="text-generation", | |
# max_new_tokens=512, | |
# do_sample=False, | |
# repetition_penalty=1.03, | |
#) | |
# BadRequestError: (Request ID: ots-pfsrtb04xa7oVcKIc) Bad request: Model requires a Pro subscription; check out hf.co/pricing to learn more. Make sure to include your HF token in your query. | |
# API Reference:HuggingFaceEndpoint | |
print("JB: in class NewsletterGenCrew - using llm: ", llm) | |
return llm | |
def step_callback( | |
self, | |
agent_output: Union[str, List[Tuple[Dict, str]], AgentFinish], | |
agent_name, | |
*args, | |
): | |
with st.chat_message("AI"): | |
# Try to parse the output if it is a JSON string | |
if isinstance(agent_output, str): | |
try: | |
agent_output = json.loads(agent_output) | |
except json.JSONDecodeError: | |
pass | |
if isinstance(agent_output, list) and all( | |
isinstance(item, tuple) for item in agent_output | |
): | |
for action, description in agent_output: | |
# Print attributes based on assumed structure | |
st.write(f"Agent Name: {agent_name}") | |
st.write(f"Tool used: {getattr(action, 'tool', 'Unknown')}") | |
st.write(f"Tool input: {getattr(action, 'tool_input', 'Unknown')}") | |
st.write(f"{getattr(action, 'log', 'Unknown')}") | |
with st.expander("Show observation"): | |
st.markdown(f"Observation\n\n{description}") | |
# Check if the output is a dictionary as in the second case | |
elif isinstance(agent_output, AgentFinish): | |
st.write(f"Agent Name: {agent_name}") | |
output = agent_output.return_values | |
st.write(f"I finished my task:\n{output['output']}") | |
# Handle unexpected formats | |
else: | |
st.write(type(agent_output)) | |
st.write(agent_output) | |
def researcher(self) -> Agent: | |
return Agent( | |
config=self.agents_config["researcher"], | |
tools=[SearchAndContents(), FindSimilar(), GetContents()], | |
verbose=True, | |
llm=self.llm(), | |
step_callback=lambda step: self.step_callback(step, "Research Agent"), | |
) | |
def editor(self) -> Agent: | |
return Agent( | |
config=self.agents_config["editor"], | |
verbose=True, | |
tools=[SearchAndContents(), FindSimilar(), GetContents()], | |
llm=self.llm(), | |
step_callback=lambda step: self.step_callback(step, "Chief Editor"), | |
) | |
def designer(self) -> Agent: | |
return Agent( | |
config=self.agents_config["designer"], | |
verbose=True, | |
allow_delegation=False, | |
llm=self.llm(), | |
step_callback=lambda step: self.step_callback(step, "HTML Writer"), | |
) | |
def research_task(self) -> Task: | |
return Task( | |
config=self.tasks_config["research_task"], | |
agent=self.researcher(), | |
output_file=f"logs/{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}_research_task.md", | |
) | |
def edit_task(self) -> Task: | |
return Task( | |
config=self.tasks_config["edit_task"], | |
agent=self.editor(), | |
output_file=f"logs/{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}_edit_task.md", | |
) | |
def newsletter_task(self) -> Task: | |
return Task( | |
config=self.tasks_config["newsletter_task"], | |
agent=self.designer(), | |
output_file=f"logs/{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}_newsletter_task.html", | |
) | |
def crew(self) -> Crew: | |
"""Creates the NewsletterGen crew""" | |
return Crew( | |
agents=self.agents, # Automatically created by the @agent decorator | |
tasks=self.tasks, # Automatically created by the @task decorator | |
process=Process.sequential, | |
verbose=2, | |
# process=Process.hierarchical, # In case you wanna use that instead https://docs.crewai.com/how-to/Hierarchical/ | |
) | |