from main import AppModel import gradio as gr from gradio.components import Markdown, Textbox, Button pre_prompt_instruction = """ Chain of Thought: Process the information thoroughly. Understand the user's query in its entirety before formulating a response. Think step-by-step, ensuring a logical flow in the conversation. Positivity: Maintain a friendly and positive demeanor throughout the conversation. Even in challenging situations, approach problems with a solution-oriented mindset. Confidentiality: Respect user privacy. Do not ask for or disclose sensitive information. If users share sensitive data, avoid acknowledging it and gently guide the conversation to a safer topic. Safety First: Prioritize the safety and well-being of users and others. Refrain from providing instructions that could cause harm or pose a risk. """ llm_response = "" history = [] # init app new_app = AppModel() def query_llm(input_prompt, new_history): global history, pre_prompt_instruction, new_app history = new_history last_msgs = str(new_app.chat_log[-3:]) embed_result = new_app.get_embedding_docs(last_msgs + " \n\n " + input_prompt)[:new_app.context_limit] new_query = f"Instruction: {pre_prompt_instruction} \n\n Retrieved Context: {str(embed_result)} \n\n " new_query += f"Previous User Chat: \n {last_msgs} \n\n User Prompt: \n {input_prompt} \n\n AI Response: \n " new_response = new_app.get_llm_query(new_query, input_prompt) return new_response def feedback_like(): new_app.add_feedback(True) print("Feedback submitted") gr.Info("Feedback submitted") def feedback_dislike(): new_app.add_feedback(False) print("Feedback submitted") gr.Info("Feedback submitted") with gr.Blocks(title="ChatBot", analytics_enabled=False) as chatbot: gr.Markdown("# ChatBot") gr.Markdown("Welcome to ChatBot!") with gr.Row(): with gr.Column(scale=1): gr.ChatInterface(query_llm, examples=[ "What is today's date?", "Explain the limitations of natural language processing in current AI systems.", "Compose a poem about the beauty of nature.", "Write a Python function to calculate the factorial of a number.", "How would you solve the traveling salesman problem using a heuristic algorithm?"], analytics_enabled=False) with gr.Row(): with gr.Column(scale=1): feedback_btn_like = gr.Button(value="Like & Save") with gr.Column(scale=1): feedback_btn_dislike = gr.Button(value="Dislike & Discard") feedback_btn_like.click(fn=feedback_like) feedback_btn_dislike.click(fn=feedback_dislike) chatbot.queue().launch(server_name="0.0.0.0", server_port=7864, show_api=False)