CoherentControl / model.py
foz
Fix requirements
aada7c5
raw
history blame
4.93 kB
from enum import Enum
import gc
import numpy as np
import torch
import jax
import jax.numpy as jnp
import numpy as np
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from PIL import Image
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel
import utils
import gradio_utils
import os
from einops import rearrange
import matplotlib.pyplot as plt
def create_key(seed=0):
return jax.random.PRNGKey(seed)
class Model:
def __init__(self, **kwargs):
self.base_controlnet, self.base_controlnet_params = FlaxControlNetModel.from_pretrained(
#"JFoz/dog-cat-pose", dtype=jnp.bfloat16
"lllyasviel/control_v11p_sd15_openpose", dtype=jnp.bfloat16, from_pt=True
)
self.pipe, self.params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.base_controlnet, revision="flax", dtype=jnp.bfloat16,# from_pt=True,
)
def infer_frame(self, frame_id, prompt, negative_prompt, rng, **kwargs):
print(prompt, frame_id)
num_samples = 1
prompt_ids = self.pipe.prepare_text_inputs([prompt[frame_id]]*num_samples)
negative_prompt_ids = self.pipe.prepare_text_inputs([negative_prompt[frame_id]] * num_samples)
processed_image = self.pipe.prepare_image_inputs([kwargs['image'][frame_id]]*num_samples)
self.params["controlnet"] = self.base_controlnet_params
p_params = replicate(self.params)
prompt_ids = shard(prompt_ids)
negative_prompt_ids = shard(negative_prompt_ids)
processed_image = shard(processed_image)
output = self.pipe(
prompt_ids=prompt_ids,
image=processed_image,
params=p_params,
prng_seed=rng,
num_inference_steps=50,
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images
output_images = np.asarray(output.reshape((num_samples,) + output.shape[-3:]))
return output_images
def inference(self, **kwargs):
seed = kwargs.pop('seed', 0)
rng = create_key(0)
rng = jax.random.split(rng, jax.device_count())
f = len(kwargs['image'])
print('frames', f)
assert 'prompt' in kwargs
prompt = [kwargs.pop('prompt')] * f
negative_prompt = [kwargs.pop('negative_prompt', '')] * f
frames_counter = 0
result = []
for i in range(0, f):
print(f'Processing frame {i + 1} / {f}')
result.append(self.infer_frame(frame_id=i,
prompt=prompt,
negative_prompt=negative_prompt,
rng = rng,
**kwargs))
frames_counter += 1
result = np.stack(result, axis=0)
return result
def process_controlnet_pose(self,
video_path,
prompt,
num_inference_steps=20,
controlnet_conditioning_scale=1.0,
guidance_scale=9.0,
seed=42,
eta=0.0,
resolution=512,
save_path=None):
print("Module Pose")
video_path = gradio_utils.motion_to_video_path(video_path)
added_prompt = 'best quality, extremely detailed, HD, ultra-realistic, 8K, HQ, masterpiece, trending on artstation, art, smooth'
negative_prompts = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer difits, cropped, worst quality, low quality, deformed body, bloated, ugly, unrealistic'
video, fps = utils.prepare_video(
video_path, resolution, False, output_fps=4)
control = utils.pre_process_pose(
video, apply_pose_detect=False)
print('N frames', len(control))
f, _, h, w = video.shape
result = self.inference(image=control,
prompt=prompt + ', ' + added_prompt,
height=h,
width=w,
negative_prompt=negative_prompts,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
eta=eta,
seed=seed,
output_type='numpy',
)
return utils.create_gif(result.astype(jnp.float16), fps, path=save_path)