import streamlit as st from transformers import pipeline import torch import torch.nn.functional as F def main(): models = ["distilbert-base-uncased-finetuned-sst-2-english","cardiffnlp/twitter-roberta-base-sentiment","finiteautomata/bertweet-base-sentiment-analysis","papluca/xlm-roberta-base-language-detection","cardiffnlp/twitter-roberta-base-sentiment-latest","yiyanghkust/finbert-tone","ProsusAI/finbert","j-hartmann/emotion-english-distilroberta-base"] st.title("Streamlit Sentiment Analysis App ") st.header("Sentiments analysis using Trnasformers by 🤗") st.header("Jozef Janosko - CS 482, Milestone 2") st.text("Input a test string for sentiment analysis.") input=st.text_input("input string") model = st.selectbox("Select Model...", models) st.text("Result using "+model+": ") st.text(str(sentiment_Analysis(input,model))) def sentiment_Analysis(input, model): classifier = pipeline("sentiment-analysis",model) ret=classifier(input) return ret if __name__ == '__main__' : main()