Spaces:
Runtime error
Runtime error
Jonathan Malott
commited on
Commit
•
244fae2
1
Parent(s):
257a122
- .cache/minDALL-E/1.3B/config.yaml +38 -0
- .cache/minDALL-E/1.3B/tokenizer/bpe-16k-merges.txt +0 -0
- .cache/minDALL-E/1.3B/tokenizer/bpe-16k-vocab.json +0 -0
- .gitattributes +27 -0
- .gitignore +4 -7
- README.md +13 -0
- app.py +48 -0
- background.py +61 -0
- clip/__init__.py +1 -0
- clip/bpe_simple_vocab_16e6.txt.gz +3 -0
- clip/clip.py +231 -0
- clip/model.py +432 -0
- clip/simple_tokenizer.py +132 -0
- dalle/__pycache__/__init__.cpython-39.pyc +0 -0
- dalle/models/__init__.py +6 -10
- dalle/models/__pycache__/__init__.cpython-39.pyc +0 -0
- dalle/models/__pycache__/tokenizer.cpython-39.pyc +0 -0
- dalle/models/stage1/__pycache__/layers.cpython-39.pyc +0 -0
- dalle/models/stage1/__pycache__/vqgan.cpython-39.pyc +0 -0
- dalle/models/stage1/vqgan.py +2 -8
- dalle/models/stage2/__pycache__/layers.cpython-39.pyc +0 -0
- dalle/models/stage2/__pycache__/transformer.cpython-39.pyc +0 -0
- dalle/models/stage2/transformer.py +1 -2
- dalle/utils/__pycache__/__init__.cpython-39.pyc +0 -0
- dalle/utils/__pycache__/config.cpython-39.pyc +0 -0
- dalle/utils/__pycache__/sampling.cpython-39.pyc +0 -0
- dalle/utils/__pycache__/utils.cpython-39.pyc +0 -0
- dalle/utils/sampling.py +2 -10
- minDALL-E +1 -0
- page/__pycache__/generate.cpython-39.pyc +0 -0
- page/__pycache__/reduce.cpython-39.pyc +0 -0
- test +1 -0
- utils.py +1 -1
.cache/minDALL-E/1.3B/config.yaml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset:
|
2 |
+
tokenizer_type: CharBPE
|
3 |
+
context_length: 64
|
4 |
+
image_resolution: 256
|
5 |
+
|
6 |
+
stage1:
|
7 |
+
type: vqgan
|
8 |
+
embed_dim: 256
|
9 |
+
n_embed: 16384
|
10 |
+
hparams:
|
11 |
+
double_z: False
|
12 |
+
z_channels: 256
|
13 |
+
resolution: 256
|
14 |
+
in_channels: 3
|
15 |
+
out_ch: 3
|
16 |
+
ch: 128
|
17 |
+
ch_mult: [1, 1, 2, 2, 4]
|
18 |
+
num_res_blocks: 2
|
19 |
+
attn_resolutions: [16]
|
20 |
+
pdrop: 0.0
|
21 |
+
|
22 |
+
stage2:
|
23 |
+
type: transformer1d
|
24 |
+
vocab_size_txt: 16384
|
25 |
+
vocab_size_img: 16384
|
26 |
+
hparams:
|
27 |
+
embed_dim: 1536
|
28 |
+
n_layers: 42
|
29 |
+
n_heads: 24
|
30 |
+
n_dense_layers: 42
|
31 |
+
ctx_len_img: 256
|
32 |
+
ctx_len_txt: 64
|
33 |
+
embd_pdrop: 0.0
|
34 |
+
resid_pdrop: 0.0
|
35 |
+
attn_pdrop: 0.0
|
36 |
+
mlp_bias: True
|
37 |
+
attn_bias: True
|
38 |
+
gelu_use_approx: False
|
.cache/minDALL-E/1.3B/tokenizer/bpe-16k-merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
.cache/minDALL-E/1.3B/tokenizer/bpe-16k-vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
19 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
@@ -1,20 +1,17 @@
|
|
1 |
.ipynb_checkpoints/
|
2 |
|
3 |
-
|
4 |
__pycache__/
|
5 |
|
6 |
-
|
7 |
_archives/
|
8 |
|
9 |
-
|
10 |
_exampleImages/
|
11 |
|
12 |
-
|
13 |
_trash/
|
14 |
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
|
|
|
19 |
|
20 |
-
|
|
|
1 |
.ipynb_checkpoints/
|
2 |
|
|
|
3 |
__pycache__/
|
4 |
|
|
|
5 |
_archives/
|
6 |
|
|
|
7 |
_exampleImages/
|
8 |
|
|
|
9 |
_trash/
|
10 |
|
11 |
+
temp/
|
12 |
|
13 |
+
1.3B.tar.gz
|
|
|
14 |
|
15 |
+
stage1_last.ckpt
|
16 |
|
17 |
+
stage2_last.ckpt
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Ai Architecture
|
3 |
+
emoji: 😻
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: blue
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.10.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
import os, random, time
|
6 |
+
|
7 |
+
from utils import footer
|
8 |
+
from page import generate, reduce
|
9 |
+
|
10 |
+
|
11 |
+
if( hasattr(st.session_state, 'page') == False):
|
12 |
+
st.session_state.page = 0
|
13 |
+
|
14 |
+
if( hasattr(st.session_state, 'results') == False):
|
15 |
+
st.session_state.results = []
|
16 |
+
|
17 |
+
p1 = st.empty()
|
18 |
+
p2 = st.empty()
|
19 |
+
p3 = st.empty()
|
20 |
+
|
21 |
+
|
22 |
+
st.session_state.stop = False
|
23 |
+
st.session_state.progress = 0
|
24 |
+
st.session_state.regenerate = False
|
25 |
+
|
26 |
+
if(st.session_state.page == 0):
|
27 |
+
p2.empty()
|
28 |
+
p3.empty()
|
29 |
+
with p1.container():
|
30 |
+
generate.app()
|
31 |
+
|
32 |
+
|
33 |
+
if(st.session_state.page == 1):
|
34 |
+
p1.empty()
|
35 |
+
p3.empty()
|
36 |
+
with p2.container():
|
37 |
+
reduce.app()
|
38 |
+
|
39 |
+
if(st.session_state.page == 2):
|
40 |
+
p1.empty()
|
41 |
+
p2.empty()
|
42 |
+
with p3.container():
|
43 |
+
st.write("This 333")
|
44 |
+
startButton = st.button("S3")
|
45 |
+
if startButton:
|
46 |
+
st.session_state.page = 0
|
47 |
+
|
48 |
+
footer()
|
background.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts
|
2 |
+
from htbuilder.units import percent, px
|
3 |
+
from htbuilder.funcs import rgba, rgb
|
4 |
+
import streamlit as st
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
import argparse
|
8 |
+
import clip
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
from dalle.models import Dalle
|
12 |
+
from dalle.utils.utils import set_seed, clip_score
|
13 |
+
import cv2
|
14 |
+
import subprocess
|
15 |
+
import signal
|
16 |
+
|
17 |
+
def signal_handler(sig, frame):
|
18 |
+
print('You pressed Ctrl+C!')
|
19 |
+
sys.exit(0)
|
20 |
+
|
21 |
+
|
22 |
+
def generate(prompt,crazy):
|
23 |
+
|
24 |
+
print("-------------------")
|
25 |
+
|
26 |
+
signal.signal(signal.SIGINT, signal_handler)
|
27 |
+
|
28 |
+
device = 'cpu'
|
29 |
+
model = Dalle.from_pretrained('minDALL-E/1.3B') # This will automatically download the pretrained model.
|
30 |
+
model.to(device=device)
|
31 |
+
num_candidates = 3
|
32 |
+
|
33 |
+
images = []
|
34 |
+
|
35 |
+
set_seed(np.random.randint(0,10000))
|
36 |
+
|
37 |
+
# Sampling
|
38 |
+
images = model.sampling(prompt=prompt,
|
39 |
+
top_k=2048,
|
40 |
+
top_p=None,
|
41 |
+
softmax_temperature=crazy,
|
42 |
+
num_candidates=num_candidates,
|
43 |
+
device=device).cpu().numpy()
|
44 |
+
images = np.transpose(images, (0, 2, 3, 1))
|
45 |
+
|
46 |
+
# CLIP Re-ranking
|
47 |
+
model_clip, preprocess_clip = clip.load("ViT-B/32", device=device)
|
48 |
+
model_clip.to(device=device)
|
49 |
+
rank = clip_score(prompt=prompt,
|
50 |
+
images=images,
|
51 |
+
model_clip=model_clip,
|
52 |
+
preprocess_clip=preprocess_clip,
|
53 |
+
device=device)
|
54 |
+
|
55 |
+
# Save images
|
56 |
+
#return images[rank]
|
57 |
+
for image in images:
|
58 |
+
cv2.imwrite('temp/'+str(np.random.randint(0,10000))+'.jpeg', image)
|
59 |
+
|
60 |
+
|
61 |
+
generate("a pink house",0.75)
|
clip/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .clip import *
|
clip/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
clip/clip.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from typing import Any, Union, List
|
6 |
+
from pkg_resources import packaging
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
from .model import build_model
|
14 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
15 |
+
|
16 |
+
try:
|
17 |
+
from torchvision.transforms import InterpolationMode
|
18 |
+
BICUBIC = InterpolationMode.BICUBIC
|
19 |
+
except ImportError:
|
20 |
+
BICUBIC = Image.BICUBIC
|
21 |
+
|
22 |
+
|
23 |
+
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
|
24 |
+
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
25 |
+
|
26 |
+
|
27 |
+
__all__ = ["available_models", "load", "tokenize"]
|
28 |
+
_tokenizer = _Tokenizer()
|
29 |
+
|
30 |
+
_MODELS = {
|
31 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
32 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
33 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
34 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
35 |
+
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
36 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
37 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
38 |
+
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
39 |
+
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
|
40 |
+
}
|
41 |
+
|
42 |
+
|
43 |
+
def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")):
|
44 |
+
os.makedirs(root, exist_ok=True)
|
45 |
+
filename = os.path.basename(url)
|
46 |
+
|
47 |
+
expected_sha256 = url.split("/")[-2]
|
48 |
+
download_target = os.path.join(root, filename)
|
49 |
+
|
50 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
51 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
52 |
+
|
53 |
+
if os.path.isfile(download_target):
|
54 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
55 |
+
return download_target
|
56 |
+
else:
|
57 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
58 |
+
|
59 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
60 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
|
61 |
+
while True:
|
62 |
+
buffer = source.read(8192)
|
63 |
+
if not buffer:
|
64 |
+
break
|
65 |
+
|
66 |
+
output.write(buffer)
|
67 |
+
loop.update(len(buffer))
|
68 |
+
|
69 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
70 |
+
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
71 |
+
|
72 |
+
return download_target
|
73 |
+
|
74 |
+
|
75 |
+
def _convert_image_to_rgb(image):
|
76 |
+
return image.convert("RGB")
|
77 |
+
|
78 |
+
|
79 |
+
def _transform(n_px):
|
80 |
+
return Compose([
|
81 |
+
Resize(n_px, interpolation=BICUBIC),
|
82 |
+
CenterCrop(n_px),
|
83 |
+
_convert_image_to_rgb,
|
84 |
+
ToTensor(),
|
85 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
86 |
+
])
|
87 |
+
|
88 |
+
|
89 |
+
def available_models() -> List[str]:
|
90 |
+
"""Returns the names of available CLIP models"""
|
91 |
+
return list(_MODELS.keys())
|
92 |
+
|
93 |
+
|
94 |
+
def load(name: str, device: Union[str, torch.device] = None, jit=False):
|
95 |
+
"""Load a CLIP model
|
96 |
+
|
97 |
+
Parameters
|
98 |
+
----------
|
99 |
+
name : str
|
100 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
101 |
+
|
102 |
+
device : Union[str, torch.device]
|
103 |
+
The device to put the loaded model
|
104 |
+
|
105 |
+
jit : bool
|
106 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
107 |
+
|
108 |
+
Returns
|
109 |
+
-------
|
110 |
+
model : torch.nn.Module
|
111 |
+
The CLIP model
|
112 |
+
|
113 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
114 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
115 |
+
"""
|
116 |
+
if device is None:
|
117 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
118 |
+
if name in _MODELS:
|
119 |
+
model_path = _download(_MODELS[name])
|
120 |
+
elif os.path.isfile(name):
|
121 |
+
model_path = name
|
122 |
+
else:
|
123 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
124 |
+
|
125 |
+
try:
|
126 |
+
# loading JIT archive
|
127 |
+
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
128 |
+
state_dict = None
|
129 |
+
except RuntimeError:
|
130 |
+
# loading saved state dict
|
131 |
+
if jit:
|
132 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
133 |
+
jit = False
|
134 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
135 |
+
|
136 |
+
if not jit:
|
137 |
+
model = build_model(state_dict or model.state_dict()).to(device)
|
138 |
+
if str(device) == "cpu":
|
139 |
+
model.float()
|
140 |
+
return model, _transform(model.visual.input_resolution)
|
141 |
+
|
142 |
+
# patch the device names
|
143 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
144 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
145 |
+
|
146 |
+
def patch_device(module):
|
147 |
+
try:
|
148 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
149 |
+
except RuntimeError:
|
150 |
+
graphs = []
|
151 |
+
|
152 |
+
if hasattr(module, "forward1"):
|
153 |
+
graphs.append(module.forward1.graph)
|
154 |
+
|
155 |
+
for graph in graphs:
|
156 |
+
for node in graph.findAllNodes("prim::Constant"):
|
157 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
158 |
+
node.copyAttributes(device_node)
|
159 |
+
|
160 |
+
model.apply(patch_device)
|
161 |
+
patch_device(model.encode_image)
|
162 |
+
patch_device(model.encode_text)
|
163 |
+
|
164 |
+
# patch dtype to float32 on CPU
|
165 |
+
if str(device) == "cpu":
|
166 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
167 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
168 |
+
float_node = float_input.node()
|
169 |
+
|
170 |
+
def patch_float(module):
|
171 |
+
try:
|
172 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
173 |
+
except RuntimeError:
|
174 |
+
graphs = []
|
175 |
+
|
176 |
+
if hasattr(module, "forward1"):
|
177 |
+
graphs.append(module.forward1.graph)
|
178 |
+
|
179 |
+
for graph in graphs:
|
180 |
+
for node in graph.findAllNodes("aten::to"):
|
181 |
+
inputs = list(node.inputs())
|
182 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
183 |
+
if inputs[i].node()["value"] == 5:
|
184 |
+
inputs[i].node().copyAttributes(float_node)
|
185 |
+
|
186 |
+
model.apply(patch_float)
|
187 |
+
patch_float(model.encode_image)
|
188 |
+
patch_float(model.encode_text)
|
189 |
+
|
190 |
+
model.float()
|
191 |
+
|
192 |
+
return model, _transform(model.input_resolution.item())
|
193 |
+
|
194 |
+
|
195 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor:
|
196 |
+
"""
|
197 |
+
Returns the tokenized representation of given input string(s)
|
198 |
+
|
199 |
+
Parameters
|
200 |
+
----------
|
201 |
+
texts : Union[str, List[str]]
|
202 |
+
An input string or a list of input strings to tokenize
|
203 |
+
|
204 |
+
context_length : int
|
205 |
+
The context length to use; all CLIP models use 77 as the context length
|
206 |
+
|
207 |
+
truncate: bool
|
208 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
209 |
+
|
210 |
+
Returns
|
211 |
+
-------
|
212 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
213 |
+
"""
|
214 |
+
if isinstance(texts, str):
|
215 |
+
texts = [texts]
|
216 |
+
|
217 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
218 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
219 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
220 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
221 |
+
|
222 |
+
for i, tokens in enumerate(all_tokens):
|
223 |
+
if len(tokens) > context_length:
|
224 |
+
if truncate:
|
225 |
+
tokens = tokens[:context_length]
|
226 |
+
tokens[-1] = eot_token
|
227 |
+
else:
|
228 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
229 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
230 |
+
|
231 |
+
return result
|
clip/model.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
|
10 |
+
class Bottleneck(nn.Module):
|
11 |
+
expansion = 4
|
12 |
+
|
13 |
+
def __init__(self, inplanes, planes, stride=1):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
19 |
+
|
20 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
21 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
22 |
+
|
23 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
24 |
+
|
25 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
26 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
27 |
+
|
28 |
+
self.relu = nn.ReLU(inplace=True)
|
29 |
+
self.downsample = None
|
30 |
+
self.stride = stride
|
31 |
+
|
32 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
33 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
34 |
+
self.downsample = nn.Sequential(OrderedDict([
|
35 |
+
("-1", nn.AvgPool2d(stride)),
|
36 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
37 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
38 |
+
]))
|
39 |
+
|
40 |
+
def forward(self, x: torch.Tensor):
|
41 |
+
identity = x
|
42 |
+
|
43 |
+
out = self.relu(self.bn1(self.conv1(x)))
|
44 |
+
out = self.relu(self.bn2(self.conv2(out)))
|
45 |
+
out = self.avgpool(out)
|
46 |
+
out = self.bn3(self.conv3(out))
|
47 |
+
|
48 |
+
if self.downsample is not None:
|
49 |
+
identity = self.downsample(x)
|
50 |
+
|
51 |
+
out += identity
|
52 |
+
out = self.relu(out)
|
53 |
+
return out
|
54 |
+
|
55 |
+
|
56 |
+
class AttentionPool2d(nn.Module):
|
57 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
58 |
+
super().__init__()
|
59 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
60 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
61 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
62 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
64 |
+
self.num_heads = num_heads
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
68 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
69 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
70 |
+
x, _ = F.multi_head_attention_forward(
|
71 |
+
query=x, key=x, value=x,
|
72 |
+
embed_dim_to_check=x.shape[-1],
|
73 |
+
num_heads=self.num_heads,
|
74 |
+
q_proj_weight=self.q_proj.weight,
|
75 |
+
k_proj_weight=self.k_proj.weight,
|
76 |
+
v_proj_weight=self.v_proj.weight,
|
77 |
+
in_proj_weight=None,
|
78 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
79 |
+
bias_k=None,
|
80 |
+
bias_v=None,
|
81 |
+
add_zero_attn=False,
|
82 |
+
dropout_p=0,
|
83 |
+
out_proj_weight=self.c_proj.weight,
|
84 |
+
out_proj_bias=self.c_proj.bias,
|
85 |
+
use_separate_proj_weight=True,
|
86 |
+
training=self.training,
|
87 |
+
need_weights=False
|
88 |
+
)
|
89 |
+
|
90 |
+
return x[0]
|
91 |
+
|
92 |
+
|
93 |
+
class ModifiedResNet(nn.Module):
|
94 |
+
"""
|
95 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
96 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
97 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
98 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
102 |
+
super().__init__()
|
103 |
+
self.output_dim = output_dim
|
104 |
+
self.input_resolution = input_resolution
|
105 |
+
|
106 |
+
# the 3-layer stem
|
107 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
108 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
109 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
110 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
111 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
112 |
+
self.bn3 = nn.BatchNorm2d(width)
|
113 |
+
self.avgpool = nn.AvgPool2d(2)
|
114 |
+
self.relu = nn.ReLU(inplace=True)
|
115 |
+
|
116 |
+
# residual layers
|
117 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
118 |
+
self.layer1 = self._make_layer(width, layers[0])
|
119 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
120 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
121 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
122 |
+
|
123 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
124 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
125 |
+
|
126 |
+
def _make_layer(self, planes, blocks, stride=1):
|
127 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
128 |
+
|
129 |
+
self._inplanes = planes * Bottleneck.expansion
|
130 |
+
for _ in range(1, blocks):
|
131 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
132 |
+
|
133 |
+
return nn.Sequential(*layers)
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
def stem(x):
|
137 |
+
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
|
138 |
+
x = self.relu(bn(conv(x)))
|
139 |
+
x = self.avgpool(x)
|
140 |
+
return x
|
141 |
+
|
142 |
+
x = x.type(self.conv1.weight.dtype)
|
143 |
+
x = stem(x)
|
144 |
+
x = self.layer1(x)
|
145 |
+
x = self.layer2(x)
|
146 |
+
x = self.layer3(x)
|
147 |
+
x = self.layer4(x)
|
148 |
+
x = self.attnpool(x)
|
149 |
+
|
150 |
+
return x
|
151 |
+
|
152 |
+
|
153 |
+
class LayerNorm(nn.LayerNorm):
|
154 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
155 |
+
|
156 |
+
def forward(self, x: torch.Tensor):
|
157 |
+
orig_type = x.dtype
|
158 |
+
ret = super().forward(x.type(torch.float32))
|
159 |
+
return ret.type(orig_type)
|
160 |
+
|
161 |
+
|
162 |
+
class QuickGELU(nn.Module):
|
163 |
+
def forward(self, x: torch.Tensor):
|
164 |
+
return x * torch.sigmoid(1.702 * x)
|
165 |
+
|
166 |
+
|
167 |
+
class ResidualAttentionBlock(nn.Module):
|
168 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
169 |
+
super().__init__()
|
170 |
+
|
171 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
172 |
+
self.ln_1 = LayerNorm(d_model)
|
173 |
+
self.mlp = nn.Sequential(OrderedDict([
|
174 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
175 |
+
("gelu", QuickGELU()),
|
176 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
177 |
+
]))
|
178 |
+
self.ln_2 = LayerNorm(d_model)
|
179 |
+
self.attn_mask = attn_mask
|
180 |
+
|
181 |
+
def attention(self, x: torch.Tensor):
|
182 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
183 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
184 |
+
|
185 |
+
def forward(self, x: torch.Tensor):
|
186 |
+
x = x + self.attention(self.ln_1(x))
|
187 |
+
x = x + self.mlp(self.ln_2(x))
|
188 |
+
return x
|
189 |
+
|
190 |
+
|
191 |
+
class Transformer(nn.Module):
|
192 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
193 |
+
super().__init__()
|
194 |
+
self.width = width
|
195 |
+
self.layers = layers
|
196 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
197 |
+
|
198 |
+
def forward(self, x: torch.Tensor):
|
199 |
+
return self.resblocks(x)
|
200 |
+
|
201 |
+
|
202 |
+
class VisionTransformer(nn.Module):
|
203 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
204 |
+
super().__init__()
|
205 |
+
self.input_resolution = input_resolution
|
206 |
+
self.output_dim = output_dim
|
207 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
208 |
+
|
209 |
+
scale = width ** -0.5
|
210 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
211 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
212 |
+
self.ln_pre = LayerNorm(width)
|
213 |
+
|
214 |
+
self.transformer = Transformer(width, layers, heads)
|
215 |
+
|
216 |
+
self.ln_post = LayerNorm(width)
|
217 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
218 |
+
|
219 |
+
def forward(self, x: torch.Tensor):
|
220 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
221 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
222 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
223 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
224 |
+
x = x + self.positional_embedding.to(x.dtype)
|
225 |
+
x = self.ln_pre(x)
|
226 |
+
|
227 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
228 |
+
x = self.transformer(x)
|
229 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
230 |
+
|
231 |
+
x = self.ln_post(x[:, 0, :])
|
232 |
+
|
233 |
+
if self.proj is not None:
|
234 |
+
x = x @ self.proj
|
235 |
+
|
236 |
+
return x
|
237 |
+
|
238 |
+
|
239 |
+
class CLIP(nn.Module):
|
240 |
+
def __init__(self,
|
241 |
+
embed_dim: int,
|
242 |
+
# vision
|
243 |
+
image_resolution: int,
|
244 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
245 |
+
vision_width: int,
|
246 |
+
vision_patch_size: int,
|
247 |
+
# text
|
248 |
+
context_length: int,
|
249 |
+
vocab_size: int,
|
250 |
+
transformer_width: int,
|
251 |
+
transformer_heads: int,
|
252 |
+
transformer_layers: int
|
253 |
+
):
|
254 |
+
super().__init__()
|
255 |
+
|
256 |
+
self.context_length = context_length
|
257 |
+
|
258 |
+
if isinstance(vision_layers, (tuple, list)):
|
259 |
+
vision_heads = vision_width * 32 // 64
|
260 |
+
self.visual = ModifiedResNet(
|
261 |
+
layers=vision_layers,
|
262 |
+
output_dim=embed_dim,
|
263 |
+
heads=vision_heads,
|
264 |
+
input_resolution=image_resolution,
|
265 |
+
width=vision_width
|
266 |
+
)
|
267 |
+
else:
|
268 |
+
vision_heads = vision_width // 64
|
269 |
+
self.visual = VisionTransformer(
|
270 |
+
input_resolution=image_resolution,
|
271 |
+
patch_size=vision_patch_size,
|
272 |
+
width=vision_width,
|
273 |
+
layers=vision_layers,
|
274 |
+
heads=vision_heads,
|
275 |
+
output_dim=embed_dim
|
276 |
+
)
|
277 |
+
|
278 |
+
self.transformer = Transformer(
|
279 |
+
width=transformer_width,
|
280 |
+
layers=transformer_layers,
|
281 |
+
heads=transformer_heads,
|
282 |
+
attn_mask=self.build_attention_mask()
|
283 |
+
)
|
284 |
+
|
285 |
+
self.vocab_size = vocab_size
|
286 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
287 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
288 |
+
self.ln_final = LayerNorm(transformer_width)
|
289 |
+
|
290 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
291 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
292 |
+
|
293 |
+
self.initialize_parameters()
|
294 |
+
|
295 |
+
def initialize_parameters(self):
|
296 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
297 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
298 |
+
|
299 |
+
if isinstance(self.visual, ModifiedResNet):
|
300 |
+
if self.visual.attnpool is not None:
|
301 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
302 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
303 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
304 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
305 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
306 |
+
|
307 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
308 |
+
for name, param in resnet_block.named_parameters():
|
309 |
+
if name.endswith("bn3.weight"):
|
310 |
+
nn.init.zeros_(param)
|
311 |
+
|
312 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
313 |
+
attn_std = self.transformer.width ** -0.5
|
314 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
315 |
+
for block in self.transformer.resblocks:
|
316 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
317 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
318 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
319 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
320 |
+
|
321 |
+
if self.text_projection is not None:
|
322 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
323 |
+
|
324 |
+
def build_attention_mask(self):
|
325 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
326 |
+
# pytorch uses additive attention mask; fill with -inf
|
327 |
+
mask = torch.empty(self.context_length, self.context_length)
|
328 |
+
mask.fill_(float("-inf"))
|
329 |
+
mask.triu_(1) # zero out the lower diagonal
|
330 |
+
return mask
|
331 |
+
|
332 |
+
@property
|
333 |
+
def dtype(self):
|
334 |
+
return self.visual.conv1.weight.dtype
|
335 |
+
|
336 |
+
def encode_image(self, image):
|
337 |
+
return self.visual(image.type(self.dtype))
|
338 |
+
|
339 |
+
def encode_text(self, text):
|
340 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
341 |
+
|
342 |
+
x = x + self.positional_embedding.type(self.dtype)
|
343 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
344 |
+
x = self.transformer(x)
|
345 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
346 |
+
x = self.ln_final(x).type(self.dtype)
|
347 |
+
|
348 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
349 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
350 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
351 |
+
|
352 |
+
return x
|
353 |
+
|
354 |
+
def forward(self, image, text):
|
355 |
+
image_features = self.encode_image(image)
|
356 |
+
text_features = self.encode_text(text)
|
357 |
+
|
358 |
+
# normalized features
|
359 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
360 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
361 |
+
|
362 |
+
# cosine similarity as logits
|
363 |
+
logit_scale = self.logit_scale.exp()
|
364 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
365 |
+
logits_per_text = logit_scale * text_features @ image_features.t()
|
366 |
+
|
367 |
+
# shape = [global_batch_size, global_batch_size]
|
368 |
+
return logits_per_image, logits_per_text
|
369 |
+
|
370 |
+
|
371 |
+
def convert_weights(model: nn.Module):
|
372 |
+
"""Convert applicable model parameters to fp16"""
|
373 |
+
|
374 |
+
def _convert_weights_to_fp16(l):
|
375 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
376 |
+
l.weight.data = l.weight.data.half()
|
377 |
+
if l.bias is not None:
|
378 |
+
l.bias.data = l.bias.data.half()
|
379 |
+
|
380 |
+
if isinstance(l, nn.MultiheadAttention):
|
381 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
382 |
+
tensor = getattr(l, attr)
|
383 |
+
if tensor is not None:
|
384 |
+
tensor.data = tensor.data.half()
|
385 |
+
|
386 |
+
for name in ["text_projection", "proj"]:
|
387 |
+
if hasattr(l, name):
|
388 |
+
attr = getattr(l, name)
|
389 |
+
if attr is not None:
|
390 |
+
attr.data = attr.data.half()
|
391 |
+
|
392 |
+
model.apply(_convert_weights_to_fp16)
|
393 |
+
|
394 |
+
|
395 |
+
def build_model(state_dict: dict):
|
396 |
+
vit = "visual.proj" in state_dict
|
397 |
+
|
398 |
+
if vit:
|
399 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
400 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
401 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
402 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
403 |
+
image_resolution = vision_patch_size * grid_size
|
404 |
+
else:
|
405 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
406 |
+
vision_layers = tuple(counts)
|
407 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
408 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
409 |
+
vision_patch_size = None
|
410 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
411 |
+
image_resolution = output_width * 32
|
412 |
+
|
413 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
414 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
415 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
416 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
417 |
+
transformer_heads = transformer_width // 64
|
418 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
419 |
+
|
420 |
+
model = CLIP(
|
421 |
+
embed_dim,
|
422 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
423 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
424 |
+
)
|
425 |
+
|
426 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
427 |
+
if key in state_dict:
|
428 |
+
del state_dict[key]
|
429 |
+
|
430 |
+
convert_weights(model)
|
431 |
+
model.load_state_dict(state_dict)
|
432 |
+
return model.eval()
|
clip/simple_tokenizer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import html
|
3 |
+
import os
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
import ftfy
|
7 |
+
import regex as re
|
8 |
+
|
9 |
+
|
10 |
+
@lru_cache()
|
11 |
+
def default_bpe():
|
12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def bytes_to_unicode():
|
17 |
+
"""
|
18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
19 |
+
The reversible bpe codes work on unicode strings.
|
20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
25 |
+
"""
|
26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
27 |
+
cs = bs[:]
|
28 |
+
n = 0
|
29 |
+
for b in range(2**8):
|
30 |
+
if b not in bs:
|
31 |
+
bs.append(b)
|
32 |
+
cs.append(2**8+n)
|
33 |
+
n += 1
|
34 |
+
cs = [chr(n) for n in cs]
|
35 |
+
return dict(zip(bs, cs))
|
36 |
+
|
37 |
+
|
38 |
+
def get_pairs(word):
|
39 |
+
"""Return set of symbol pairs in a word.
|
40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
41 |
+
"""
|
42 |
+
pairs = set()
|
43 |
+
prev_char = word[0]
|
44 |
+
for char in word[1:]:
|
45 |
+
pairs.add((prev_char, char))
|
46 |
+
prev_char = char
|
47 |
+
return pairs
|
48 |
+
|
49 |
+
|
50 |
+
def basic_clean(text):
|
51 |
+
text = ftfy.fix_text(text)
|
52 |
+
text = html.unescape(html.unescape(text))
|
53 |
+
return text.strip()
|
54 |
+
|
55 |
+
|
56 |
+
def whitespace_clean(text):
|
57 |
+
text = re.sub(r'\s+', ' ', text)
|
58 |
+
text = text.strip()
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
class SimpleTokenizer(object):
|
63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
64 |
+
self.byte_encoder = bytes_to_unicode()
|
65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
67 |
+
merges = merges[1:49152-256-2+1]
|
68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
69 |
+
vocab = list(bytes_to_unicode().values())
|
70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
71 |
+
for merge in merges:
|
72 |
+
vocab.append(''.join(merge))
|
73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
79 |
+
|
80 |
+
def bpe(self, token):
|
81 |
+
if token in self.cache:
|
82 |
+
return self.cache[token]
|
83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
84 |
+
pairs = get_pairs(word)
|
85 |
+
|
86 |
+
if not pairs:
|
87 |
+
return token+'</w>'
|
88 |
+
|
89 |
+
while True:
|
90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
91 |
+
if bigram not in self.bpe_ranks:
|
92 |
+
break
|
93 |
+
first, second = bigram
|
94 |
+
new_word = []
|
95 |
+
i = 0
|
96 |
+
while i < len(word):
|
97 |
+
try:
|
98 |
+
j = word.index(first, i)
|
99 |
+
new_word.extend(word[i:j])
|
100 |
+
i = j
|
101 |
+
except:
|
102 |
+
new_word.extend(word[i:])
|
103 |
+
break
|
104 |
+
|
105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
106 |
+
new_word.append(first+second)
|
107 |
+
i += 2
|
108 |
+
else:
|
109 |
+
new_word.append(word[i])
|
110 |
+
i += 1
|
111 |
+
new_word = tuple(new_word)
|
112 |
+
word = new_word
|
113 |
+
if len(word) == 1:
|
114 |
+
break
|
115 |
+
else:
|
116 |
+
pairs = get_pairs(word)
|
117 |
+
word = ' '.join(word)
|
118 |
+
self.cache[token] = word
|
119 |
+
return word
|
120 |
+
|
121 |
+
def encode(self, text):
|
122 |
+
bpe_tokens = []
|
123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
124 |
+
for token in re.findall(self.pat, text):
|
125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
127 |
+
return bpe_tokens
|
128 |
+
|
129 |
+
def decode(self, tokens):
|
130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
132 |
+
return text
|
dalle/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (175 Bytes). View file
|
|
dalle/models/__init__.py
CHANGED
@@ -43,24 +43,20 @@ class Dalle(nn.Module):
|
|
43 |
@classmethod
|
44 |
def from_pretrained(cls,
|
45 |
path: str) -> nn.Module:
|
46 |
-
|
47 |
-
|
48 |
-
path = ''
|
49 |
|
50 |
config_base = get_base_config()
|
51 |
-
config_new = OmegaConf.load(os.path.join(path, '
|
52 |
config_update = OmegaConf.merge(config_base, config_new)
|
53 |
|
54 |
model = cls(config_update)
|
55 |
-
model.tokenizer = build_tokenizer(
|
56 |
context_length=model.config_dataset.context_length,
|
57 |
lowercase=True,
|
58 |
dropout=None)
|
59 |
-
model.stage1.from_ckpt(
|
60 |
-
model.stage2.from_ckpt(
|
61 |
-
#model.stage1.from_ckpt('https://utexas.box.com/shared/static/rpt9miyj2kikogyekpqnkd6y115xp51i.ckpt')
|
62 |
-
#model.stage2.from_ckpt('https://utexas.box.com/shared/static/54jc9fw0bious5nx6wvayeqaskcrdgv4.ckpt')
|
63 |
-
|
64 |
return model
|
65 |
|
66 |
@torch.no_grad()
|
|
|
43 |
@classmethod
|
44 |
def from_pretrained(cls,
|
45 |
path: str) -> nn.Module:
|
46 |
+
path = _MODELS[path] if path in _MODELS else path
|
47 |
+
path = utils.realpath_url_or_path(path, root=os.path.expanduser(".cache/minDALL-E"))
|
|
|
48 |
|
49 |
config_base = get_base_config()
|
50 |
+
config_new = OmegaConf.load(os.path.join(path, 'config.yaml'))
|
51 |
config_update = OmegaConf.merge(config_base, config_new)
|
52 |
|
53 |
model = cls(config_update)
|
54 |
+
model.tokenizer = build_tokenizer(os.path.join(path, 'tokenizer'),
|
55 |
context_length=model.config_dataset.context_length,
|
56 |
lowercase=True,
|
57 |
dropout=None)
|
58 |
+
model.stage1.from_ckpt(os.path.join(path, 'stage1_last.ckpt'))
|
59 |
+
model.stage2.from_ckpt(os.path.join(path, 'stage2_last.ckpt'))
|
|
|
|
|
|
|
60 |
return model
|
61 |
|
62 |
@torch.no_grad()
|
dalle/models/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (6.79 kB). View file
|
|
dalle/models/__pycache__/tokenizer.cpython-39.pyc
ADDED
Binary file (885 Bytes). View file
|
|
dalle/models/stage1/__pycache__/layers.cpython-39.pyc
ADDED
Binary file (7.84 kB). View file
|
|
dalle/models/stage1/__pycache__/vqgan.cpython-39.pyc
ADDED
Binary file (4.06 kB). View file
|
|
dalle/models/stage1/vqgan.py
CHANGED
@@ -88,12 +88,6 @@ class VQGAN(nn.Module):
|
|
88 |
return codes
|
89 |
|
90 |
def from_ckpt(self, path: str, strict: bool = True) -> None:
|
91 |
-
#ckpt = torch.load(path, map_location='cpu')['state_dict']
|
92 |
-
#self.load_state_dict(ckpt, strict=strict)
|
93 |
-
#print(f'{path} successfully restored..')
|
94 |
-
|
95 |
ckpt = torch.load(path, map_location='cpu')['state_dict']
|
96 |
-
|
97 |
-
|
98 |
-
self.load_state_dict(ckpt, strict=True)
|
99 |
-
print(f'{path} succesfully restored..')
|
|
|
88 |
return codes
|
89 |
|
90 |
def from_ckpt(self, path: str, strict: bool = True) -> None:
|
|
|
|
|
|
|
|
|
91 |
ckpt = torch.load(path, map_location='cpu')['state_dict']
|
92 |
+
self.load_state_dict(ckpt, strict=strict)
|
93 |
+
print(f'{path} successfully restored..')
|
|
|
|
dalle/models/stage2/__pycache__/layers.cpython-39.pyc
ADDED
Binary file (3.77 kB). View file
|
|
dalle/models/stage2/__pycache__/transformer.cpython-39.pyc
ADDED
Binary file (7.16 kB). View file
|
|
dalle/models/stage2/transformer.py
CHANGED
@@ -13,7 +13,7 @@ from typing import Optional, Tuple, List
|
|
13 |
from torch.cuda.amp import autocast
|
14 |
from omegaconf import OmegaConf
|
15 |
from .layers import Block
|
16 |
-
|
17 |
|
18 |
class Transformer1d(nn.Module):
|
19 |
|
@@ -144,7 +144,6 @@ class Transformer1d(nn.Module):
|
|
144 |
|
145 |
def from_ckpt(self, path: str) -> None:
|
146 |
ckpt = torch.load(path, map_location='cpu')['state_dict']
|
147 |
-
#ckpt = torch.utils.model_zoo.load_url('https://utexas.box.com/shared/static/54jc9fw0bious5nx6wvayeqaskcrdgv4.ckpt', map_location='cpu')['state_dict']
|
148 |
self.load_state_dict(ckpt, strict=True)
|
149 |
print(f'{path} succesfully restored..')
|
150 |
|
|
|
13 |
from torch.cuda.amp import autocast
|
14 |
from omegaconf import OmegaConf
|
15 |
from .layers import Block
|
16 |
+
|
17 |
|
18 |
class Transformer1d(nn.Module):
|
19 |
|
|
|
144 |
|
145 |
def from_ckpt(self, path: str) -> None:
|
146 |
ckpt = torch.load(path, map_location='cpu')['state_dict']
|
|
|
147 |
self.load_state_dict(ckpt, strict=True)
|
148 |
print(f'{path} succesfully restored..')
|
149 |
|
dalle/utils/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (241 Bytes). View file
|
|
dalle/utils/__pycache__/config.cpython-39.pyc
ADDED
Binary file (4.97 kB). View file
|
|
dalle/utils/__pycache__/sampling.cpython-39.pyc
ADDED
Binary file (3.72 kB). View file
|
|
dalle/utils/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (2.98 kB). View file
|
|
dalle/utils/sampling.py
CHANGED
@@ -68,8 +68,6 @@ def sampling(model: torch.nn.Module,
|
|
68 |
pbar = tqdm(range(max_seq_len), total=max_seq_len) if is_tqdm else range(max_seq_len)
|
69 |
pos_enc_tokens = get_positional_encoding(tokens, mode='1d')
|
70 |
|
71 |
-
#my_bar = st.progress(0)
|
72 |
-
|
73 |
for cnt, h in enumerate(pbar):
|
74 |
if code is None:
|
75 |
code_ = None
|
@@ -95,6 +93,8 @@ def sampling(model: torch.nn.Module,
|
|
95 |
else:
|
96 |
past.append(present)
|
97 |
|
|
|
|
|
98 |
logits = cutoff_topk_logits(logits, top_k)
|
99 |
probs = F.softmax(logits, dim=-1)
|
100 |
probs = cutoff_topp_probs(probs, top_p)
|
@@ -102,14 +102,6 @@ def sampling(model: torch.nn.Module,
|
|
102 |
idx = torch.multinomial(probs, num_samples=1).clone().detach()
|
103 |
code = idx if code is None else torch.cat([code, idx], axis=1)
|
104 |
|
105 |
-
#print(cnt/max_seq_len)
|
106 |
-
if(st.session_state.page != 0):
|
107 |
-
break
|
108 |
-
|
109 |
-
st.session_state.bar.progress(cnt/max_seq_len)
|
110 |
-
|
111 |
-
#my_bar.progress(cnt/max_seq_len)
|
112 |
-
|
113 |
del past
|
114 |
return code
|
115 |
|
|
|
68 |
pbar = tqdm(range(max_seq_len), total=max_seq_len) if is_tqdm else range(max_seq_len)
|
69 |
pos_enc_tokens = get_positional_encoding(tokens, mode='1d')
|
70 |
|
|
|
|
|
71 |
for cnt, h in enumerate(pbar):
|
72 |
if code is None:
|
73 |
code_ = None
|
|
|
93 |
else:
|
94 |
past.append(present)
|
95 |
|
96 |
+
st.session_state.bar = cnt/max_seq_len
|
97 |
+
|
98 |
logits = cutoff_topk_logits(logits, top_k)
|
99 |
probs = F.softmax(logits, dim=-1)
|
100 |
probs = cutoff_topp_probs(probs, top_p)
|
|
|
102 |
idx = torch.multinomial(probs, num_samples=1).clone().detach()
|
103 |
code = idx if code is None else torch.cat([code, idx], axis=1)
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
del past
|
106 |
return code
|
107 |
|
minDALL-E
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit e5480076b9634e9dc097e1892157ed2cf15a2f86
|
page/__pycache__/generate.cpython-39.pyc
ADDED
Binary file (2.34 kB). View file
|
|
page/__pycache__/reduce.cpython-39.pyc
ADDED
Binary file (1.63 kB). View file
|
|
test
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit bfb917d14f50035f23f8d57c751e5f0c6e7f7277
|
utils.py
CHANGED
@@ -84,7 +84,7 @@ def generate(prompt,crazy,k):
|
|
84 |
|
85 |
device = 'cpu'
|
86 |
print("-2-")
|
87 |
-
model = Dalle.from_pretrained('
|
88 |
print("-3-")
|
89 |
model.to(device=device)
|
90 |
num_candidates = 1
|
|
|
84 |
|
85 |
device = 'cpu'
|
86 |
print("-2-")
|
87 |
+
model = Dalle.from_pretrained('minDALL-E/1.3B') # This will automatically download the pretrained model.
|
88 |
print("-3-")
|
89 |
model.to(device=device)
|
90 |
num_candidates = 1
|