import os import random import torch import spaces import numpy as np import gradio as gr from PIL import Image from diffusers import DDPMScheduler from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler from module.ip_adapter.utils import load_adapter_to_pipe from pipelines.sdxl_instantir import InstantIRPipeline from huggingface_hub import hf_hub_download def resize_img(input_image, max_side=1024, min_side=768, width=None, height=None, pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): w, h = input_image.size # Prepare output size if width > 0 and height > 0: out_w, out_h = width, height elif width > 0: out_w = width out_h = round(h * width / w) elif height > 0: out_h = height out_w = round(w * height / h) else: out_w, out_h = w, h # Resize input to runtime size w, h = out_w, out_h if min(w, h) < min_side: ratio = min_side / min(w, h) w, h = round(ratio * w), round(ratio * h) if max(w, h) > max_side: ratio = max_side / max(w, h) w, h = round(ratio * w), round(ratio * h) # Resize to cope with UNet and VAE operations w_resize_new = (w // base_pixel_number) * base_pixel_number h_resize_new = (h // base_pixel_number) * base_pixel_number input_image = input_image.resize([w_resize_new, h_resize_new], mode) if pad_to_max_side: res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 offset_x = (max_side - w_resize_new) // 2 offset_y = (max_side - h_resize_new) // 2 res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) input_image = Image.fromarray(res) return input_image, (out_w, out_h) if not os.path.exists("models/adapter.pt"): hf_hub_download(repo_id="InstantX/InstantIR", filename="models/adapter.pt", local_dir=".") if not os.path.exists("models/aggregator.pt"): hf_hub_download(repo_id="InstantX/InstantIR", filename="models/aggregator.pt", local_dir=".") if not os.path.exists("models/previewer_lora_weights.bin"): hf_hub_download(repo_id="InstantX/InstantIR", filename="models/previewer_lora_weights.bin", local_dir=".") device = "cuda" if torch.cuda.is_available() else "cpu" sdxl_repo_id = "stabilityai/stable-diffusion-xl-base-1.0" dinov2_repo_id = "facebook/dinov2-large" lcm_repo_id = "latent-consistency/lcm-lora-sdxl" torch_dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 # Load pretrained models. print("Initializing pipeline...") pipe = InstantIRPipeline.from_pretrained( sdxl_repo_id, torch_dtype=torch_dtype, ) # Image prompt projector. print("Loading LQ-Adapter...") load_adapter_to_pipe( pipe, "models/adapter.pt", dinov2_repo_id, ) # Prepare previewer lora_alpha = pipe.prepare_previewers("models") print(f"use lora alpha {lora_alpha}") lora_alpha = pipe.prepare_previewers(lcm_repo_id, use_lcm=True) print(f"use lora alpha {lora_alpha}") pipe.to(device=device, dtype=torch_dtype) pipe.scheduler = DDPMScheduler.from_pretrained(sdxl_repo_id, subfolder="scheduler") lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config) pipe.scheduler = DDPMScheduler.from_pretrained( sdxl_repo_id, subfolder="scheduler" ) lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config) # Load weights. print("Loading checkpoint...") aggregator_state_dict = torch.load( "models/aggregator.pt", map_location="cpu" ) pipe.aggregator.load_state_dict(aggregator_state_dict) pipe.aggregator.to(device=device, dtype=torch_dtype) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1280 MIN_IMAGE_SIZE = 1024 PROMPT = "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, \ ultra HD, extreme meticulous detailing, skin pore detailing, \ hyper sharpness, perfect without deformations, \ taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. " NEG_PROMPT = "blurry, out of focus, unclear, depth of field, over-smooth, \ sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, \ dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, \ watermark, signature, jpeg artifacts, deformed, lowres" def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def unpack_pipe_out(preview_row, index): return preview_row[index][0] def dynamic_preview_slider(sampling_steps): return gr.Slider(label="Restoration Previews", value=sampling_steps-1, minimum=0, maximum=sampling_steps-1, step=1) def dynamic_guidance_slider(sampling_steps): return gr.Slider(label="Start Free Rendering", value=sampling_steps, minimum=0, maximum=sampling_steps, step=1) def show_final_preview(preview_row): return preview_row[-1][0] @spaces.GPU(duration=70) def instantir_restore( lq, prompt="", steps=30, cfg_scale=7.0, guidance_end=1.0, creative_restoration=False, seed=3407, height=None, width=None, preview_start=0.0): if creative_restoration: if "lcm" not in pipe.unet.active_adapters(): pipe.unet.set_adapter('lcm') else: if "previewer" not in pipe.unet.active_adapters(): pipe.unet.set_adapter('previewer') if isinstance(guidance_end, int): guidance_end = guidance_end / steps elif guidance_end > 1.0: guidance_end = guidance_end / steps if isinstance(preview_start, int): preview_start = preview_start / steps elif preview_start > 1.0: preview_start = preview_start / steps lq, out_size = resize_img(lq, width=width, height=height) lq = [lq] generator = torch.Generator(device=device).manual_seed(seed) timesteps = [ i * (1000//steps) + pipe.scheduler.config.steps_offset for i in range(0, steps) ] timesteps = timesteps[::-1] prompt = PROMPT if len(prompt)==0 else prompt neg_prompt = NEG_PROMPT out = pipe( prompt=[prompt]*len(lq), image=lq, num_inference_steps=steps, generator=generator, timesteps=timesteps, negative_prompt=[neg_prompt]*len(lq), guidance_scale=cfg_scale, control_guidance_end=guidance_end, preview_start=preview_start, previewer_scheduler=lcm_scheduler, return_dict=False, save_preview_row=True, ) out[0][0] = out[0][0].resize([out_size[0], out_size[1]], Image.BILINEAR) for i, preview_tuple in enumerate(out[1]): preview_tuple[0] = preview_tuple[0].resize([out_size[0], out_size[1]], Image.BILINEAR) preview_tuple.append(f"preview_{i}") return out[0][0], out[1] css=""" #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks() as demo: gr.Markdown( """ # InstantIR: Blind Image Restoration with Instant Generative Reference. ### **Official 🤗 Gradio demo of [InstantIR](https://github.com/instantX-research/InstantIR).** ### **InstantIR can not only help you restore your broken image, but also capable of imaginative re-creation following your text prompts. See advance usage for more details!** ## Basic usage: revitalize your image 1. Upload an image you want to restore; 2. By default InstantIR will restore your image at original size, you can change output size by setting `Height` and `Width` according to your requirements; 3. Optionally, tune the `Steps` `CFG Scale` parameters. Typically higher steps lead to better results, but less than 50 is recommended for efficiency; 4. Click `InstantIR magic!`. """) with gr.Row(): with gr.Column(): lq_img = gr.Image(label="Low-quality image", type="pil") with gr.Row(): restore_btn = gr.Button("InstantIR magic!") clear_btn = gr.ClearButton() with gr.Row(): steps = gr.Number(label="Steps", value=30, step=1) cfg_scale = gr.Number(label="CFG Scale", value=7.0, step=0.1) with gr.Row(): height = gr.Number(label="Height", step=1, maximum=MAX_IMAGE_SIZE) width = gr.Number(label="Width", step=1, maximum=MAX_IMAGE_SIZE) seed = gr.Number(label="Seed", value=42, step=1) guidance_end = gr.Slider(label="Start Free Rendering", value=30, minimum=0, maximum=30, step=1) preview_start = gr.Slider(label="Preview Start", value=0, minimum=0, maximum=30, step=1) mode = gr.Checkbox(label="Creative Restoration", value=False) prompt = gr.Textbox(label="Restoration prompts (Optional)", placeholder="") with gr.Column(): output = gr.Image(label="InstantIR restored", type="pil") index = gr.Slider(label="Restoration Previews", value=29, minimum=0, maximum=29, step=1) preview = gr.Image(label="Preview", type="pil") gr.Examples( examples = [ "examples/wukong.png", "examples/lady.png", "examples/man.png", "examples/dog.png", "examples/panda.png", "examples/sculpture.png", "examples/cottage.png", "examples/Naruto.png", "examples/Konan.png" ], inputs = [lq_img] ) pipe_out = gr.Gallery(visible=False) clear_btn.add([lq_img, output, preview]) restore_btn.click( instantir_restore, inputs=[ lq_img, prompt, steps, cfg_scale, guidance_end, mode, seed, height, width, preview_start, ], outputs=[output, pipe_out], api_name="InstantIR" ) steps.change(dynamic_guidance_slider, inputs=steps, outputs=guidance_end) output.change(dynamic_preview_slider, inputs=steps, outputs=index) index.release(unpack_pipe_out, inputs=[pipe_out, index], outputs=preview) output.change(show_final_preview, inputs=pipe_out, outputs=preview) gr.Markdown( """ ## Advance usage: ### Browse restoration variants: 1. After InstantIR processing, drag the `Restoration Previews` slider to explore other in-progress versions; 2. If you like one of them, set the `Start Free Rendering` slider to the same value to get a more refined result. ### Creative restoration: 1. Check the `Creative Restoration` checkbox; 2. Input your text prompts in the `Restoration prompts` textbox; 3. Set `Start Free Rendering` slider to a medium value (around half of the `steps`) to provide adequate room for InstantIR creation. """) gr.Markdown( """ ## Citation If InstantIR is helpful to your work, please cite our paper via: ``` @article{huang2024instantir, title={InstantIR: Blind Image Restoration with Instant Generative Reference}, author={Huang, Jen-Yuan and Wang, Haofan and Wang, Qixun and Bai, Xu and Ai, Hao and Xing, Peng and Huang, Jen-Tse}, journal={arXiv preprint arXiv:2410.06551}, year={2024} } ``` """) demo.queue().launch()