Initialization
Browse files- app.py +164 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import yfinance as yf
|
4 |
+
import plotly.express as px
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
|
7 |
+
from sklearn.preprocessing import MinMaxScaler
|
8 |
+
from tensorflow.keras.models import Sequential
|
9 |
+
from tensorflow.keras.layers import Activation, Dense, Dropout, LSTM
|
10 |
+
from datetime import date, datetime, timedelta
|
11 |
+
from stocknews import StockNews
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
# --- SIDEBAR CODE
|
16 |
+
ticker = st.sidebar.selectbox('Select your Crypto', ["BTC-USD", "ETH-USD"])
|
17 |
+
|
18 |
+
start_date = st.sidebar.date_input('Start Date', date.today() - timedelta(days=365))
|
19 |
+
end_date = st.sidebar.date_input('End Date')
|
20 |
+
|
21 |
+
|
22 |
+
# --- MAIN PAGE
|
23 |
+
st.header('Omdena Bahrain - Cryptocurrency Prediction')
|
24 |
+
|
25 |
+
col1, col2, = st.columns([1,9])
|
26 |
+
with col1:
|
27 |
+
st.image('icons/'+ ticker +'.png', width=75)
|
28 |
+
with col2:
|
29 |
+
st.write(f" ## { ticker}")
|
30 |
+
|
31 |
+
ticker_obj = yf.Ticker(ticker)
|
32 |
+
|
33 |
+
|
34 |
+
# --- CODE
|
35 |
+
|
36 |
+
model_data = ticker_obj.history(interval='1h', start=start_date, end=end_date)
|
37 |
+
|
38 |
+
# Extract the 'close' column for prediction
|
39 |
+
target_data = model_data["Close"].values.reshape(-1, 1)
|
40 |
+
|
41 |
+
# Normalize the target data
|
42 |
+
scaler = MinMaxScaler()
|
43 |
+
target_data_normalized = scaler.fit_transform(target_data)
|
44 |
+
|
45 |
+
# Normalize the input features
|
46 |
+
input_features = ['Open', 'High', 'Low', 'Volume']
|
47 |
+
input_data = model_data[input_features].values
|
48 |
+
input_data_normalized = scaler.fit_transform(input_data)
|
49 |
+
|
50 |
+
def build_lstm_model(input_data, output_size, neurons, activ_func='linear', dropout=0.2, loss='mse', optimizer='adam'):
|
51 |
+
model = Sequential()
|
52 |
+
model.add(LSTM(neurons, input_shape=(input_data.shape[1], input_data.shape[2])))
|
53 |
+
model.add(Dropout(dropout))
|
54 |
+
model.add(Dense(units=output_size))
|
55 |
+
model.add(Activation(activ_func))
|
56 |
+
|
57 |
+
model.compile(loss=loss, optimizer=optimizer)
|
58 |
+
|
59 |
+
return model
|
60 |
+
|
61 |
+
|
62 |
+
# Hyperparameters
|
63 |
+
np.random.seed(245)
|
64 |
+
window_len = 10
|
65 |
+
split_ratio = 0.8 # Ratio of training set to total data
|
66 |
+
zero_base = True
|
67 |
+
lstm_neurons = 50
|
68 |
+
epochs = 100
|
69 |
+
batch_size = 128 #32
|
70 |
+
loss = 'mean_squared_error'
|
71 |
+
dropout = 0.24
|
72 |
+
optimizer = 'adam'
|
73 |
+
|
74 |
+
def extract_window_data(input_data, target_data, window_len):
|
75 |
+
X = []
|
76 |
+
y = []
|
77 |
+
for i in range(len(input_data) - window_len):
|
78 |
+
X.append(input_data[i : i + window_len])
|
79 |
+
y.append(target_data[i + window_len])
|
80 |
+
return np.array(X), np.array(y)
|
81 |
+
|
82 |
+
X, y = extract_window_data(input_data_normalized, target_data_normalized, window_len)
|
83 |
+
|
84 |
+
|
85 |
+
# Split the data into training and testing sets
|
86 |
+
split_ratio = 0.8 # Ratio of training set to total data
|
87 |
+
split_index = int(split_ratio * len(X))
|
88 |
+
|
89 |
+
X_train, X_test = X[:split_index], X[split_index:]
|
90 |
+
y_train, y_test = y[:split_index], y[split_index:]
|
91 |
+
|
92 |
+
# Creating model
|
93 |
+
model = build_lstm_model(X_train, output_size=1, neurons=lstm_neurons, dropout=dropout, loss=loss, optimizer=optimizer)
|
94 |
+
|
95 |
+
# Saved Weights
|
96 |
+
file_path = "models/LSTM_" + ticker + "_weights.h5"
|
97 |
+
|
98 |
+
# Loads the weights
|
99 |
+
model.load_weights(file_path)
|
100 |
+
|
101 |
+
# Step 4: Make predictions
|
102 |
+
preds = model.predict(X_test)
|
103 |
+
y_test = y[split_index:]
|
104 |
+
|
105 |
+
# Normalize the target data
|
106 |
+
scaler = MinMaxScaler()
|
107 |
+
target_data_normalized = scaler.fit_transform(target_data)
|
108 |
+
|
109 |
+
# Inverse normalize the predictions
|
110 |
+
preds = preds.reshape(-1, 1)
|
111 |
+
y_test = y_test.reshape(-1, 1)
|
112 |
+
preds = scaler.inverse_transform(preds)
|
113 |
+
y_test = scaler.inverse_transform(y_test)
|
114 |
+
|
115 |
+
fig = px.line(x=model_data.index[-len(y_test):],
|
116 |
+
y=[y_test.flatten(), preds.flatten()])
|
117 |
+
newnames = {'wide_variable_0':'Real Values', 'wide_variable_1': 'Predictions'}
|
118 |
+
fig.for_each_trace(lambda t: t.update(name = newnames[t.name],
|
119 |
+
legendgroup = newnames[t.name],
|
120 |
+
hovertemplate = t.hovertemplate.replace(t.name, newnames[t.name])))
|
121 |
+
fig.update_layout(
|
122 |
+
xaxis_title="Date",
|
123 |
+
yaxis_title=ticker+" Price",
|
124 |
+
legend_title=" ")
|
125 |
+
st.write(fig)
|
126 |
+
|
127 |
+
|
128 |
+
# --- INFO BUBBLE
|
129 |
+
|
130 |
+
about_data, news = st.tabs(["About", "News"])
|
131 |
+
|
132 |
+
with about_data:
|
133 |
+
# Candlestick
|
134 |
+
raw_data = ticker_obj.history(start=start_date, end=end_date)
|
135 |
+
fig = go.Figure(data=[go.Candlestick(x=raw_data.index,
|
136 |
+
open=raw_data['Open'],
|
137 |
+
high=raw_data['High'],
|
138 |
+
low=raw_data['Low'],
|
139 |
+
close=raw_data['Close'])])
|
140 |
+
fig.update_layout(
|
141 |
+
title=ticker + " candlestick : Open, High, Low and Close",
|
142 |
+
yaxis_title=ticker + ' Price')
|
143 |
+
st.plotly_chart(fig)
|
144 |
+
|
145 |
+
# Table
|
146 |
+
history_data = raw_data.copy()
|
147 |
+
|
148 |
+
# Formating index Date
|
149 |
+
history_data.index = pd.to_datetime(history_data.index, format='%Y-%m-%d %H:%M:%S').date
|
150 |
+
history_data.index.name = "Date"
|
151 |
+
history_data.sort_values(by='Date', ascending=False, inplace=True)
|
152 |
+
st.write(history_data)
|
153 |
+
|
154 |
+
|
155 |
+
with news:
|
156 |
+
sNews = StockNews(ticker, save_news=False)
|
157 |
+
sNews_df = sNews.read_rss()
|
158 |
+
|
159 |
+
# Showing most recent news
|
160 |
+
for i in range(10):
|
161 |
+
st.subheader(f"{i+1} - {sNews_df['title'][i]}")
|
162 |
+
st.write(sNews_df['summary'][i])
|
163 |
+
date_object = datetime.strptime(sNews_df['published'][i], '%a, %d %b %Y %H:%M:%S %z')
|
164 |
+
st.write(f"_{date_object.strftime('%A')}, {date_object.date()}_")
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datetime==4.0.1
|
2 |
+
numpy==1.22.4
|
3 |
+
pandas==1.5.3
|
4 |
+
plotly==5.13.1
|
5 |
+
sklearn-pandas==2.2.0
|
6 |
+
stocknews==0.9.11
|
7 |
+
streamlit==1.24.1
|
8 |
+
tensorflow==2.12.0
|
9 |
+
yfinance==0.2.24
|