import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig import os from threading import Thread import spaces import time token = os.environ["HF_TOKEN"] quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16 ) model = AutoModelForCausalLM.from_pretrained("google/gemma-1.1-7b-it", quantization_config=quantization_config, token=token) tok = AutoTokenizer.from_pretrained("google/gemma-1.1-7b-it", token=token) if torch.cuda.is_available(): device = torch.device('cuda') print(f"Using GPU: {torch.cuda.get_device_name(device)}") else: device = torch.device('cpu') print("Using CPU") # model = model.to(device) # Dispatch Errors model = model.to_bettertransformer() @spaces.GPU def chat(message, history): start_time = time.time() chat = [] for item in history: chat.append({"role": "user", "content": item[0]}) if item[1] is not None: chat.append({"role": "assistant", "content": item[1]}) chat.append({"role": "user", "content": message}) messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) model_inputs = tok([messages], return_tensors="pt").to(device) streamer = TextIteratorStreamer( tok, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, top_p=0.95, top_k=1000, temperature=0.75, num_beams=1, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() partial_text = "" first_token_time = None for new_text in streamer: if not first_token_time: first_token_time = time.time() - start_time partial_text += new_text yield partial_text total_time = time.time() - start_time tokens = len(tok.tokenize(partial_text)) tokens_per_second = tokens / total_time if total_time > 0 else 0 # Append the timing information to the final output timing_info = f"\nTime taken to first token: {first_token_time:.2f} seconds\nTokens per second: {tokens_per_second:.2f}" yield partial_text + timing_info demo = gr.ChatInterface(fn=chat, examples=[["Write me a poem about Machine Learning."]], title="Chat With LLMS") demo.launch()