Facility_Batch_Predict / facility_predict.py
Jacaranda's picture
Upload facility_predict.py
669aa7b
raw
history blame
7.21 kB
import os
import random
import gradio as gr
import json
import numpy as np
import torch
import heapq
import pandas as pd
from tqdm import tqdm
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from torch.utils.data import TensorDataset, DataLoader
class Preprocess:
def __init__(self, tokenizer_vocab_path, tokenizer_max_len):
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_vocab_path, use_auth_token='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')
self.max_len = tokenizer_max_len
def clean_text(self, text):
text = text.lower()
stopwords = ["i", "was", "transferred",
"from", "to", "nilienda", "kituo",
"cha", "lakini", "saa", "hii", "niko",
"at", "nilienda", "nikahudumiwa", "pole",
"deliver", "na", "ni", "baada", "ya",
"kutumwa", "kutoka", "nilienda",
"ndipo", "nikapewa", "hiyo", "lindam ama", "nikawa",
"mgonjwa", "nikatibiwa", "in", "had", "a",
"visit", "gynaecologist", "ndio",
"karibu", "mimi", "niko", "sehemu", "hospitali",
"serikali", "delivered", "katika", "kaunti", "kujifungua",
"katika", "huko", "nilipoenda", "kwa", "bado", "naedelea",
"sija", "maliza", "mwisho",
"nilianza", "kliniki", "yangu",
"nilianzia", "nilijifungua"]
text_single = ' '.join(word for word in text.split() if word not in stopwords)
return text_single
def encode_fn(self, text_single):
"""
Using tokenizer to preprocess the text
example of text_single:'Nairobi Hospital'
"""
tokenizer = self.tokenizer(text_single,
padding=True,
truncation=True,
max_length=self.max_len,
return_tensors='pt'
)
input_ids = tokenizer['input_ids']
attention_mask = tokenizer['attention_mask']
return input_ids, attention_mask
def process_tokenizer(self, text_single):
"""
Preprocess text and prepare dataloader for a single new sentence
"""
input_ids, attention_mask = self.encode_fn(text_single)
data = TensorDataset(input_ids, attention_mask)
return data
class Facility_Model:
def __init__(self, facility_model_path: any,
max_len: int):
self.max_len = max_len
self.softmax = torch.nn.Softmax(dim=1)
self.gpu = False
self.model = AutoModelForSequenceClassification.from_pretrained(facility_model_path, use_auth_token='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')
self.model.eval() # set pytorch model for inference mode
if torch.cuda.device_count() > 1:
self.model = torch.nn.DataParallel(self.model)
if self.gpu:
seed = 42
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
self.device = torch.device('cuda')
else:
self.device = 'cpu'
self.model = self.model.to(self.device)
def predict_single(self, model, pred_data):
"""
Model inference for new single sentence
"""
pred_dataloader = DataLoader(pred_data, batch_size=10, shuffle=False)
for i, batch in enumerate(pred_dataloader):
with torch.no_grad():
outputs = model(input_ids=batch[0].to(self.device),
attention_mask=batch[1].to(self.device)
)
loss, logits = outputs.loss, outputs.logits
probability = self.softmax(logits)
probability_list = probability.detach().cpu().numpy()
return probability_list
def output_intent_probability(self, pred: any) -> dict:
"""
convert the model output into a dictionary with all intents and its probability
"""
output_dict = {}
# transform the relation table(between label and intent)
path_table = pd.read_csv('dhis_label_relation_14357.csv')
label_intent_dict = path_table[["label", "corresponding_label"]].set_index("corresponding_label").to_dict()['label']
# transform the output into dictionary(between intent and probability)
for intent in range(pred.shape[1]):
output_dict[label_intent_dict[intent]] = pred[0][intent]
return output_dict
def inference(self, prepared_data):
"""
Make predictions on one new sentence and output a JSON format variable
"""
temp = []
prob_distribution = self.predict_single(self.model, prepared_data)
prediction_results = self.output_intent_probability(prob_distribution.astype(float))
# Filter out predictions containing "dental" or "optical" keywords
filtered_results = {intent: prob for intent, prob in prediction_results.items()
if
"dental" not in intent.lower() and "optical" not in intent.lower() and "eye" not in intent.lower()}
sorted_pred_intent_results = sorted(filtered_results.items(), key=lambda x: x[1], reverse=True)
sorted_pred_intent_results_dict = dict(sorted_pred_intent_results)
# Return the top result
top_results = dict(list(sorted_pred_intent_results)[:1])
# temp.append(top_results)
# final_preds = json.dumps(temp)
final_preds = ', '.join(top_results.keys())
final_preds = final_preds.replace("'", "")
return final_preds
jacaranda_hugging_face_model = "Jacaranda/dhis_14000_600k_Test_Model"
obj_Facility_Model = Facility_Model(facility_model_path=jacaranda_hugging_face_model,
max_len=128
)
processor = Preprocess(tokenizer_vocab_path=jacaranda_hugging_face_model,
tokenizer_max_len=128
)
def predict_batch_from_csv(input_file, output_file):
# Load batch data from CSV
batch_data = pd.read_csv(input_file)
# Initialize predictions list
predictions = []
# Iterate over rows with tqdm for progress tracking
for _, row in tqdm(batch_data.iterrows(), total=len(batch_data)):
text = row['facility_name'] # Replace 'facility_name' with the actual column name containing the text data
cleaned_text = processor.clean_text(text)
prepared_data = processor.process_tokenizer(cleaned_text)
prediction = obj_Facility_Model.inference(prepared_data)
predictions.append(prediction)
# Create DataFrame for predictions
output_data = pd.DataFrame({'prediction': predictions})
# Merge with input DataFrame
pred_output_df = pd.concat([batch_data, output_data], axis=1)
# Save predictions to CSV
pred_output_df.to_csv(output_file, index=False)