import gradio as gr import pandas as pd from tqdm import tqdm from facility_predict import Preprocess, Facility_Model, obj_Facility_Model, processor def predict_batch_from_csv(input_file, output_file): # Load batch data from CSV batch_data = pd.read_csv(input_file) # Initialize predictions list predictions = [] # Iterate over rows with tqdm for progress tracking for _, row in tqdm(batch_data.iterrows(), total=len(batch_data)): text = row['facility_name'] # Replace 'facility_name' with the actual column name containing the text data cleaned_text = processor.clean_text(text) prepared_data = processor.process_tokenizer(cleaned_text) prediction = obj_Facility_Model.inference(prepared_data) predictions.append(prediction) # Create DataFrame for predictions output_data = pd.DataFrame({'prediction': predictions}) # Merge with input DataFrame pred_output_df = pd.concat([batch_data, output_data], axis=1) # Save predictions to CSV pred_output_df.to_csv(output_file, index=False) def predict_batch(input_csv, output_csv): predict_batch_from_csv(input_csv, output_csv) return "Prediction completed. Results saved to " + output_csv iface = gr.Interface( fn=predict_batch, inputs=["file", "text"], outputs="text", title="Batch Facility Name Prediction", description="Upload a CSV file with facility names and get the predictions in a CSV file", #examples=[["input.csv", "output.csv"]], ) if __name__ == "__main__": iface.launch()