Spaces:
Runtime error
Runtime error
JackWong0911
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -18,13 +18,492 @@ from torchvision.transforms import (
|
|
18 |
RandomHorizontalFlip,
|
19 |
Resize,
|
20 |
)
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
|
26 |
-
MODEL =
|
27 |
-
PROCESSOR =
|
28 |
|
29 |
RESIZE_TO = PROCESSOR.size["shortest_edge"]
|
30 |
NUM_FRAMES_TO_SAMPLE = MODEL.config.num_frames
|
@@ -122,17 +601,19 @@ gr.Interface(
|
|
122 |
inputs=gr.Video(type="file"),
|
123 |
outputs=gr.Label(num_top_classes=3),
|
124 |
examples=[
|
125 |
-
["examples/
|
126 |
-
["examples/
|
127 |
-
["examples/
|
|
|
|
|
128 |
],
|
129 |
-
title="
|
130 |
description=(
|
131 |
-
"Gradio demo for
|
132 |
" examples to load them. Read more at the links below."
|
133 |
),
|
134 |
article=(
|
135 |
-
"<div style='text-align: center;'><a href='https://huggingface.co/docs/transformers/model_doc/videomae' target='_blank'>
|
136 |
" <center><a href='https://huggingface.co/sayakpaul/videomae-base-finetuned-kinetics-finetuned-ucf101-subset' target='_blank'>Fine-tuned Model</a></center></div>"
|
137 |
),
|
138 |
allow_flagging=False,
|
|
|
18 |
RandomHorizontalFlip,
|
19 |
Resize,
|
20 |
)
|
21 |
+
# my code below
|
22 |
+
# import transformers.models.timesformer.modeling_timesformer
|
23 |
+
from transformers.models.timesformer.modeling_timesformer import TimeSformerDropPath, TimeSformerAttention, TimesformerIntermediate, TimesformerOutput, TimesformerLayer, TimesformerEncoder, TimesformerModel, TIMESFORMER_INPUTS_DOCSTRING, _CONFIG_FOR_DOC, TimesformerEmbeddings, TimesformerForVideoClassification
|
24 |
+
from transformers import TimesformerConfig
|
25 |
+
configuration = TimesformerConfig()
|
26 |
+
import collections
|
27 |
+
from typing import Optional, Tuple, Union
|
28 |
|
29 |
+
import torch
|
30 |
+
import torch.nn.functional
|
31 |
+
import torch.utils.checkpoint
|
32 |
+
from torch import nn
|
33 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
34 |
+
|
35 |
+
from transformers.activations import ACT2FN
|
36 |
+
from transformers.modeling_outputs import BaseModelOutput, ImageClassifierOutput
|
37 |
+
from transformers.modeling_utils import PreTrainedModel
|
38 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
39 |
+
from transformers.models.timesformer.configuration_timesformer import TimesformerConfig
|
40 |
+
class MyTimesformerLayer(TimesformerLayer):
|
41 |
+
def __init__(self, config: configuration, layer_index: int) -> None:
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
attention_type = config.attention_type
|
45 |
+
|
46 |
+
drop_path_rates = [
|
47 |
+
x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)
|
48 |
+
] # stochastic depth decay rule
|
49 |
+
drop_path_rate = drop_path_rates[layer_index]
|
50 |
+
|
51 |
+
self.drop_path = TimeSformerDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
52 |
+
self.attention = TimeSformerAttention(config)
|
53 |
+
self.intermediate = TimesformerIntermediate(config)
|
54 |
+
self.output = TimesformerOutput(config)
|
55 |
+
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
56 |
+
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
57 |
+
|
58 |
+
self.config = config
|
59 |
+
self.attention_type = attention_type
|
60 |
+
if attention_type not in ["divided_space_time", "space_only", "joint_space_time"]:
|
61 |
+
raise ValueError("Unknown attention type: {}".format(attention_type))
|
62 |
+
|
63 |
+
# Temporal Attention Parameters
|
64 |
+
if self.attention_type == "divided_space_time":
|
65 |
+
self.temporal_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
66 |
+
self.temporal_attention = TimeSformerAttention(config)
|
67 |
+
self.temporal_dense = nn.Linear(config.hidden_size, config.hidden_size)
|
68 |
+
|
69 |
+
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False):
|
70 |
+
num_frames = self.config.num_frames
|
71 |
+
num_patch_width = self.config.image_size // self.config.patch_size
|
72 |
+
batch_size = hidden_states.shape[0]
|
73 |
+
num_spatial_tokens = (hidden_states.size(1) - 1) // num_frames
|
74 |
+
num_patch_height = num_spatial_tokens // num_patch_width
|
75 |
+
|
76 |
+
if self.attention_type in ["space_only", "joint_space_time"]:
|
77 |
+
self_attention_outputs = self.attention(
|
78 |
+
self.layernorm_before(hidden_states), output_attentions=output_attentions
|
79 |
+
)
|
80 |
+
attention_output = self_attention_outputs[0]
|
81 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
82 |
+
|
83 |
+
hidden_states = hidden_states + self.drop_path(attention_output)
|
84 |
+
|
85 |
+
layer_output = self.layernorm_after(hidden_states)
|
86 |
+
layer_output = self.intermediate(layer_output)
|
87 |
+
layer_output = self.output(layer_output)
|
88 |
+
layer_output = hidden_states + self.drop_path(layer_output)
|
89 |
+
|
90 |
+
outputs = (layer_output,) + outputs
|
91 |
+
|
92 |
+
return outputs
|
93 |
+
|
94 |
+
elif self.attention_type == "divided_space_time":
|
95 |
+
# Spatial
|
96 |
+
init_cls_token = hidden_states[:, 0, :].unsqueeze(1)
|
97 |
+
cls_token = init_cls_token.repeat(1, num_frames, 1)
|
98 |
+
cls_token = cls_token.reshape(batch_size * num_frames, 1, cls_token.shape[2])
|
99 |
+
spatial_embedding = hidden_states[:, 1:, :]
|
100 |
+
spatial_embedding = (
|
101 |
+
spatial_embedding.reshape(
|
102 |
+
batch_size, num_patch_height, num_patch_width, num_frames, spatial_embedding.shape[2]
|
103 |
+
)
|
104 |
+
.permute(0, 3, 1, 2, 4)
|
105 |
+
.reshape(batch_size * num_frames, num_patch_height * num_patch_width, spatial_embedding.shape[2])
|
106 |
+
)
|
107 |
+
spatial_embedding = torch.cat((cls_token, spatial_embedding), 1)
|
108 |
+
|
109 |
+
spatial_attention_outputs = self.attention(
|
110 |
+
self.layernorm_before(spatial_embedding), output_attentions=output_attentions
|
111 |
+
)
|
112 |
+
attention_output = spatial_attention_outputs[0]
|
113 |
+
outputs = spatial_attention_outputs[1:] # add self attentions if we output attention weights
|
114 |
+
|
115 |
+
residual_spatial = self.drop_path(attention_output)
|
116 |
+
|
117 |
+
# Taking care of CLS token
|
118 |
+
cls_token = residual_spatial[:, 0, :]
|
119 |
+
cls_token = cls_token.reshape(batch_size, num_frames, cls_token.shape[1])
|
120 |
+
cls_token = torch.mean(cls_token, 1, True) # averaging for every frame
|
121 |
+
residual_spatial = residual_spatial[:, 1:, :]
|
122 |
+
residual_spatial = (
|
123 |
+
residual_spatial.reshape(
|
124 |
+
batch_size, num_frames, num_patch_height, num_patch_width, residual_spatial.shape[2]
|
125 |
+
)
|
126 |
+
.permute(0, 2, 3, 1, 4)
|
127 |
+
.reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_spatial.shape[2])
|
128 |
+
)
|
129 |
+
residual = residual_spatial
|
130 |
+
hidden_states = hidden_states[:, 1:, :] + residual_spatial
|
131 |
+
|
132 |
+
# Temporal
|
133 |
+
temporal_embedding = hidden_states
|
134 |
+
temporal_embedding = temporal_embedding.reshape(
|
135 |
+
batch_size, num_patch_height, num_patch_width, num_frames, temporal_embedding.shape[2]
|
136 |
+
).reshape(batch_size * num_patch_height * num_patch_width, num_frames, temporal_embedding.shape[2])
|
137 |
+
|
138 |
+
temporal_attention_outputs = self.temporal_attention(
|
139 |
+
self.temporal_layernorm(temporal_embedding),
|
140 |
+
)
|
141 |
+
attention_output = temporal_attention_outputs[0]
|
142 |
+
|
143 |
+
residual_temporal = self.drop_path(attention_output)
|
144 |
+
|
145 |
+
residual_temporal = residual_temporal.reshape(
|
146 |
+
batch_size, num_patch_height, num_patch_width, num_frames, residual_temporal.shape[2]
|
147 |
+
).reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_temporal.shape[2])
|
148 |
+
residual_temporal = self.temporal_dense(residual_temporal)
|
149 |
+
hidden_states = hidden_states + residual_temporal
|
150 |
+
|
151 |
+
# Mlp
|
152 |
+
hidden_states = torch.cat((init_cls_token, hidden_states), 1) + torch.cat((cls_token, residual_temporal), 1)
|
153 |
+
layer_output = self.layernorm_after(hidden_states)
|
154 |
+
layer_output = self.intermediate(layer_output)
|
155 |
+
layer_output = self.output(layer_output)
|
156 |
+
layer_output = hidden_states + self.drop_path(layer_output)
|
157 |
+
|
158 |
+
outputs = (layer_output,) + outputs
|
159 |
+
|
160 |
+
return outputs
|
161 |
+
import transformers.models.timesformer.modeling_timesformer
|
162 |
+
class MyTimesformerEncoder(TimesformerEncoder):
|
163 |
+
def __init__(self, config: configuration) -> None:
|
164 |
+
super().__init__()
|
165 |
+
self.config = config
|
166 |
+
self.layer = nn.ModuleList([MyTimesformerLayer(config, ind) for ind in range(config.num_hidden_layers)])
|
167 |
+
self.gradient_checkpointing = False
|
168 |
+
|
169 |
+
def forward(
|
170 |
+
self,
|
171 |
+
hidden_states: torch.Tensor,
|
172 |
+
output_attentions: bool = False,
|
173 |
+
output_hidden_states: bool = False,
|
174 |
+
return_dict: bool = True,
|
175 |
+
) -> Union[tuple, BaseModelOutput]:
|
176 |
+
all_hidden_states = () if output_hidden_states else None
|
177 |
+
all_self_attentions = () if output_attentions else None
|
178 |
+
|
179 |
+
for i, layer_module in enumerate(self.layer):
|
180 |
+
if output_hidden_states:
|
181 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
182 |
+
|
183 |
+
if self.gradient_checkpointing and self.training:
|
184 |
+
layer_outputs = self._gradient_checkpointing_func(
|
185 |
+
layer_module.__call__,
|
186 |
+
hidden_states,
|
187 |
+
output_attentions,
|
188 |
+
)
|
189 |
+
else:
|
190 |
+
layer_outputs = layer_module(hidden_states, output_attentions)
|
191 |
+
|
192 |
+
hidden_states = layer_outputs[0]
|
193 |
+
|
194 |
+
if output_attentions:
|
195 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
196 |
+
|
197 |
+
if output_hidden_states:
|
198 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
199 |
+
|
200 |
+
if not return_dict:
|
201 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
202 |
+
return BaseModelOutput(
|
203 |
+
last_hidden_state=hidden_states,
|
204 |
+
hidden_states=all_hidden_states,
|
205 |
+
attentions=all_self_attentions,
|
206 |
+
)
|
207 |
+
|
208 |
+
|
209 |
+
class MyTimesformerModel(TimesformerModel):
|
210 |
+
def __init__(self, config: configuration):
|
211 |
+
super().__init__(config)
|
212 |
+
self.config = config
|
213 |
+
|
214 |
+
self.embeddings = TimesformerEmbeddings(config)
|
215 |
+
self.encoder = TimesformerEncoder(config)
|
216 |
+
|
217 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
218 |
+
|
219 |
+
# Initialize weights and apply final processing
|
220 |
+
self.post_init()
|
221 |
+
|
222 |
+
def get_input_embeddings(self):
|
223 |
+
return self.embeddings.patch_embeddings
|
224 |
+
|
225 |
+
def _prune_heads(self, heads_to_prune):
|
226 |
+
"""
|
227 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
228 |
+
class PreTrainedModel
|
229 |
+
"""
|
230 |
+
for layer, heads in heads_to_prune.items():
|
231 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
232 |
+
|
233 |
+
@add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING)
|
234 |
+
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
|
235 |
+
def forward(
|
236 |
+
self,
|
237 |
+
pixel_values: torch.FloatTensor,
|
238 |
+
output_attentions: Optional[bool] = None,
|
239 |
+
output_hidden_states: Optional[bool] = None,
|
240 |
+
return_dict: Optional[bool] = None,
|
241 |
+
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
|
242 |
+
r"""
|
243 |
+
Returns:
|
244 |
+
|
245 |
+
Examples:
|
246 |
+
|
247 |
+
```python
|
248 |
+
>>> import av
|
249 |
+
>>> import numpy as np
|
250 |
+
|
251 |
+
>>> from transformers import AutoImageProcessor, TimesformerModel
|
252 |
+
>>> from huggingface_hub import hf_hub_download
|
253 |
+
|
254 |
+
>>> np.random.seed(0)
|
255 |
+
|
256 |
+
|
257 |
+
>>> def read_video_pyav(container, indices):
|
258 |
+
... '''
|
259 |
+
... Decode the video with PyAV decoder.
|
260 |
+
... Args:
|
261 |
+
... container (`av.container.input.InputContainer`): PyAV container.
|
262 |
+
... indices (`List[int]`): List of frame indices to decode.
|
263 |
+
... Returns:
|
264 |
+
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
|
265 |
+
... '''
|
266 |
+
... frames = []
|
267 |
+
... container.seek(0)
|
268 |
+
... start_index = indices[0]
|
269 |
+
... end_index = indices[-1]
|
270 |
+
... for i, frame in enumerate(container.decode(video=0)):
|
271 |
+
... if i > end_index:
|
272 |
+
... break
|
273 |
+
... if i >= start_index and i in indices:
|
274 |
+
... frames.append(frame)
|
275 |
+
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
276 |
+
|
277 |
+
|
278 |
+
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
|
279 |
+
... '''
|
280 |
+
... Sample a given number of frame indices from the video.
|
281 |
+
... Args:
|
282 |
+
... clip_len (`int`): Total number of frames to sample.
|
283 |
+
... frame_sample_rate (`int`): Sample every n-th frame.
|
284 |
+
... seg_len (`int`): Maximum allowed index of sample's last frame.
|
285 |
+
... Returns:
|
286 |
+
... indices (`List[int]`): List of sampled frame indices
|
287 |
+
... '''
|
288 |
+
... converted_len = int(clip_len * frame_sample_rate)
|
289 |
+
... end_idx = np.random.randint(converted_len, seg_len)
|
290 |
+
... start_idx = end_idx - converted_len
|
291 |
+
... indices = np.linspace(start_idx, end_idx, num=clip_len)
|
292 |
+
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
|
293 |
+
... return indices
|
294 |
+
|
295 |
+
|
296 |
+
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
|
297 |
+
>>> file_path = hf_hub_download(
|
298 |
+
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
|
299 |
+
... )
|
300 |
+
>>> container = av.open(file_path)
|
301 |
+
|
302 |
+
>>> # sample 8 frames
|
303 |
+
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=4, seg_len=container.streams.video[0].frames)
|
304 |
+
>>> video = read_video_pyav(container, indices)
|
305 |
+
|
306 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
|
307 |
+
>>> model = TimesformerModel.from_pretrained("facebook/timesformer-base-finetuned-k400")
|
308 |
+
|
309 |
+
>>> # prepare video for the model
|
310 |
+
>>> inputs = image_processor(list(video), return_tensors="pt")
|
311 |
+
|
312 |
+
>>> # forward pass
|
313 |
+
>>> outputs = model(**inputs)
|
314 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
315 |
+
>>> list(last_hidden_states.shape)
|
316 |
+
[1, 1569, 768]
|
317 |
+
```"""
|
318 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
319 |
+
output_hidden_states = (
|
320 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
321 |
+
)
|
322 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
323 |
+
|
324 |
+
embedding_output = self.embeddings(pixel_values)
|
325 |
+
|
326 |
+
encoder_outputs = self.encoder(
|
327 |
+
embedding_output,
|
328 |
+
output_attentions=output_attentions,
|
329 |
+
output_hidden_states=output_hidden_states,
|
330 |
+
return_dict=return_dict,
|
331 |
+
)
|
332 |
+
sequence_output = encoder_outputs[0]
|
333 |
+
if self.layernorm is not None:
|
334 |
+
sequence_output = self.layernorm(sequence_output)
|
335 |
+
|
336 |
+
if not return_dict:
|
337 |
+
return (sequence_output,) + encoder_outputs[1:]
|
338 |
+
|
339 |
+
return BaseModelOutput(
|
340 |
+
last_hidden_state=sequence_output,
|
341 |
+
hidden_states=encoder_outputs.hidden_states,
|
342 |
+
attentions=encoder_outputs.attentions,
|
343 |
+
)
|
344 |
+
|
345 |
+
class MyTimesformerForVideoClassification(TimesformerForVideoClassification):
|
346 |
+
def __init__(self, config):
|
347 |
+
super().__init__(config)
|
348 |
+
|
349 |
+
self.num_labels = config.num_labels
|
350 |
+
self.timesformer = MyTimesformerModel(config)
|
351 |
+
|
352 |
+
# Classifier head
|
353 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
354 |
+
|
355 |
+
# Initialize weights and apply final processing
|
356 |
+
self.post_init()
|
357 |
+
|
358 |
+
@add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING)
|
359 |
+
@replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
360 |
+
def forward(
|
361 |
+
self,
|
362 |
+
pixel_values: Optional[torch.Tensor] = None,
|
363 |
+
labels: Optional[torch.Tensor] = None,
|
364 |
+
output_attentions: Optional[bool] = None,
|
365 |
+
output_hidden_states: Optional[bool] = None,
|
366 |
+
return_dict: Optional[bool] = None,
|
367 |
+
) -> Union[Tuple, ImageClassifierOutput]:
|
368 |
+
r"""
|
369 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
370 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
371 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
372 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
373 |
+
|
374 |
+
Returns:
|
375 |
+
|
376 |
+
Examples:
|
377 |
+
|
378 |
+
```python
|
379 |
+
>>> import av
|
380 |
+
>>> import torch
|
381 |
+
>>> import numpy as np
|
382 |
+
|
383 |
+
>>> from transformers import AutoImageProcessor, TimesformerForVideoClassification
|
384 |
+
>>> from huggingface_hub import hf_hub_download
|
385 |
+
|
386 |
+
>>> np.random.seed(0)
|
387 |
+
|
388 |
+
|
389 |
+
>>> def read_video_pyav(container, indices):
|
390 |
+
... '''
|
391 |
+
... Decode the video with PyAV decoder.
|
392 |
+
... Args:
|
393 |
+
... container (`av.container.input.InputContainer`): PyAV container.
|
394 |
+
... indices (`List[int]`): List of frame indices to decode.
|
395 |
+
... Returns:
|
396 |
+
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
|
397 |
+
... '''
|
398 |
+
... frames = []
|
399 |
+
... container.seek(0)
|
400 |
+
... start_index = indices[0]
|
401 |
+
... end_index = indices[-1]
|
402 |
+
... for i, frame in enumerate(container.decode(video=0)):
|
403 |
+
... if i > end_index:
|
404 |
+
... break
|
405 |
+
... if i >= start_index and i in indices:
|
406 |
+
... frames.append(frame)
|
407 |
+
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
408 |
+
|
409 |
+
|
410 |
+
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
|
411 |
+
... '''
|
412 |
+
... Sample a given number of frame indices from the video.
|
413 |
+
... Args:
|
414 |
+
... clip_len (`int`): Total number of frames to sample.
|
415 |
+
... frame_sample_rate (`int`): Sample every n-th frame.
|
416 |
+
... seg_len (`int`): Maximum allowed index of sample's last frame.
|
417 |
+
... Returns:
|
418 |
+
... indices (`List[int]`): List of sampled frame indices
|
419 |
+
... '''
|
420 |
+
... converted_len = int(clip_len * frame_sample_rate)
|
421 |
+
... end_idx = np.random.randint(converted_len, seg_len)
|
422 |
+
... start_idx = end_idx - converted_len
|
423 |
+
... indices = np.linspace(start_idx, end_idx, num=clip_len)
|
424 |
+
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
|
425 |
+
... return indices
|
426 |
+
|
427 |
+
|
428 |
+
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
|
429 |
+
>>> file_path = hf_hub_download(
|
430 |
+
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
|
431 |
+
... )
|
432 |
+
>>> container = av.open(file_path)
|
433 |
+
|
434 |
+
>>> # sample 8 frames
|
435 |
+
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
|
436 |
+
>>> video = read_video_pyav(container, indices)
|
437 |
+
|
438 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
|
439 |
+
>>> model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400")
|
440 |
+
|
441 |
+
>>> inputs = image_processor(list(video), return_tensors="pt")
|
442 |
+
|
443 |
+
>>> with torch.no_grad():
|
444 |
+
... outputs = model(**inputs)
|
445 |
+
... logits = outputs.logits
|
446 |
+
|
447 |
+
>>> # model predicts one of the 400 Kinetics-400 classes
|
448 |
+
>>> predicted_label = logits.argmax(-1).item()
|
449 |
+
>>> print(model.config.id2label[predicted_label])
|
450 |
+
eating spaghetti
|
451 |
+
```"""
|
452 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
453 |
+
|
454 |
+
outputs = self.timesformer(
|
455 |
+
pixel_values,
|
456 |
+
output_attentions=output_attentions,
|
457 |
+
output_hidden_states=output_hidden_states,
|
458 |
+
return_dict=return_dict,
|
459 |
+
)
|
460 |
+
|
461 |
+
sequence_output = outputs[0][:, 0]
|
462 |
+
|
463 |
+
logits = self.classifier(sequence_output)
|
464 |
+
|
465 |
+
loss = None
|
466 |
+
if labels is not None:
|
467 |
+
if self.config.problem_type is None:
|
468 |
+
if self.num_labels == 1:
|
469 |
+
self.config.problem_type = "regression"
|
470 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
471 |
+
self.config.problem_type = "single_label_classification"
|
472 |
+
else:
|
473 |
+
self.config.problem_type = "multi_label_classification"
|
474 |
+
|
475 |
+
if self.config.problem_type == "regression":
|
476 |
+
loss_fct = MSELoss()
|
477 |
+
if self.num_labels == 1:
|
478 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
479 |
+
else:
|
480 |
+
loss = loss_fct(logits, labels)
|
481 |
+
elif self.config.problem_type == "single_label_classification":
|
482 |
+
loss_fct = CrossEntropyLoss()
|
483 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
484 |
+
elif self.config.problem_type == "multi_label_classification":
|
485 |
+
loss_fct = BCEWithLogitsLoss()
|
486 |
+
loss = loss_fct(logits, labels)
|
487 |
+
|
488 |
+
if not return_dict:
|
489 |
+
output = (logits,) + outputs[1:]
|
490 |
+
return ((loss,) + output) if loss is not None else output
|
491 |
+
|
492 |
+
return ImageClassifierOutput(
|
493 |
+
loss=loss,
|
494 |
+
logits=logits,
|
495 |
+
hidden_states=outputs.hidden_states,
|
496 |
+
attentions=outputs.attentions,
|
497 |
+
)
|
498 |
+
|
499 |
+
|
500 |
+
from transformers import AutoImageProcessor
|
501 |
+
|
502 |
+
MODEL_CKPT = "JackWong0911/timesformer-base-finetuned-k400-kinetic400-subset-epoch6real-num_frame_10_myViT2_more_data"
|
503 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
504 |
|
505 |
+
MODEL = MyTimesformerForVideoClassification.from_pretrained(MODEL_CKPT).to(DEVICE)
|
506 |
+
PROCESSOR = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
|
507 |
|
508 |
RESIZE_TO = PROCESSOR.size["shortest_edge"]
|
509 |
NUM_FRAMES_TO_SAMPLE = MODEL.config.num_frames
|
|
|
601 |
inputs=gr.Video(type="file"),
|
602 |
outputs=gr.Label(num_top_classes=3),
|
603 |
examples=[
|
604 |
+
["examples/archery.mp4"],
|
605 |
+
["examples/bowling.mp4"],
|
606 |
+
["examples/flying_kite.mp4"],
|
607 |
+
["examples/high_jump.mp4"],
|
608 |
+
["examples/marching.mp4"],
|
609 |
],
|
610 |
+
title="MyViT fine-tuned on a subset of Kinetics400",
|
611 |
description=(
|
612 |
+
"Gradio demo for MyViT for video classification. To use it, simply upload your video or click one of the"
|
613 |
" examples to load them. Read more at the links below."
|
614 |
),
|
615 |
article=(
|
616 |
+
"<div style='text-align: center;'><a href='https://huggingface.co/docs/transformers/model_doc/videomae' target='_blank'>MyViT</a>"
|
617 |
" <center><a href='https://huggingface.co/sayakpaul/videomae-base-finetuned-kinetics-finetuned-ucf101-subset' target='_blank'>Fine-tuned Model</a></center></div>"
|
618 |
),
|
619 |
allow_flagging=False,
|