Spaces:
Runtime error
Runtime error
File size: 5,035 Bytes
522606a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
import tqdm
from ...models.unet_1d import UNet1DModel
from ...pipeline_utils import DiffusionPipeline
from ...utils.dummy_pt_objects import DDPMScheduler
class ValueGuidedRLPipeline(DiffusionPipeline):
def __init__(
self,
value_function: UNet1DModel,
unet: UNet1DModel,
scheduler: DDPMScheduler,
env,
):
super().__init__()
self.value_function = value_function
self.unet = unet
self.scheduler = scheduler
self.env = env
self.data = env.get_dataset()
self.means = dict()
for key in self.data.keys():
try:
self.means[key] = self.data[key].mean()
except:
pass
self.stds = dict()
for key in self.data.keys():
try:
self.stds[key] = self.data[key].std()
except:
pass
self.state_dim = env.observation_space.shape[0]
self.action_dim = env.action_space.shape[0]
def normalize(self, x_in, key):
return (x_in - self.means[key]) / self.stds[key]
def de_normalize(self, x_in, key):
return x_in * self.stds[key] + self.means[key]
def to_torch(self, x_in):
if type(x_in) is dict:
return {k: self.to_torch(v) for k, v in x_in.items()}
elif torch.is_tensor(x_in):
return x_in.to(self.unet.device)
return torch.tensor(x_in, device=self.unet.device)
def reset_x0(self, x_in, cond, act_dim):
for key, val in cond.items():
x_in[:, key, act_dim:] = val.clone()
return x_in
def run_diffusion(self, x, conditions, n_guide_steps, scale):
batch_size = x.shape[0]
y = None
for i in tqdm.tqdm(self.scheduler.timesteps):
# create batch of timesteps to pass into model
timesteps = torch.full((batch_size,), i, device=self.unet.device, dtype=torch.long)
for _ in range(n_guide_steps):
with torch.enable_grad():
x.requires_grad_()
y = self.value_function(x.permute(0, 2, 1), timesteps).sample
grad = torch.autograd.grad([y.sum()], [x])[0]
posterior_variance = self.scheduler._get_variance(i)
model_std = torch.exp(0.5 * posterior_variance)
grad = model_std * grad
grad[timesteps < 2] = 0
x = x.detach()
x = x + scale * grad
x = self.reset_x0(x, conditions, self.action_dim)
prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1)
# TODO: set prediction_type when instantiating the model
x = self.scheduler.step(prev_x, i, x, predict_epsilon=False)["prev_sample"]
# apply conditions to the trajectory
x = self.reset_x0(x, conditions, self.action_dim)
x = self.to_torch(x)
return x, y
def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1):
# normalize the observations and create batch dimension
obs = self.normalize(obs, "observations")
obs = obs[None].repeat(batch_size, axis=0)
conditions = {0: self.to_torch(obs)}
shape = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
x1 = torch.randn(shape, device=self.unet.device)
x = self.reset_x0(x1, conditions, self.action_dim)
x = self.to_torch(x)
# run the diffusion process
x, y = self.run_diffusion(x, conditions, n_guide_steps, scale)
# sort output trajectories by value
sorted_idx = y.argsort(0, descending=True).squeeze()
sorted_values = x[sorted_idx]
actions = sorted_values[:, :, : self.action_dim]
actions = actions.detach().cpu().numpy()
denorm_actions = self.de_normalize(actions, key="actions")
# select the action with the highest value
if y is not None:
selected_index = 0
else:
# if we didn't run value guiding, select a random action
selected_index = np.random.randint(0, batch_size)
denorm_actions = denorm_actions[selected_index, 0]
return denorm_actions
|