Spaces:
Runtime error
Runtime error
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional, Tuple, Union | |
import torch | |
from ...pipeline_utils import AudioPipelineOutput, DiffusionPipeline | |
from ...utils import logging | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class DanceDiffusionPipeline(DiffusionPipeline): | |
r""" | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Parameters: | |
unet ([`UNet1DModel`]): U-Net architecture to denoise the encoded image. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of | |
[`IPNDMScheduler`]. | |
""" | |
def __init__(self, unet, scheduler): | |
super().__init__() | |
self.register_modules(unet=unet, scheduler=scheduler) | |
def __call__( | |
self, | |
batch_size: int = 1, | |
num_inference_steps: int = 100, | |
generator: Optional[torch.Generator] = None, | |
audio_length_in_s: Optional[float] = None, | |
return_dict: bool = True, | |
) -> Union[AudioPipelineOutput, Tuple]: | |
r""" | |
Args: | |
batch_size (`int`, *optional*, defaults to 1): | |
The number of audio samples to generate. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality audio sample at | |
the expense of slower inference. | |
generator (`torch.Generator`, *optional*): | |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
deterministic. | |
audio_length_in_s (`float`, *optional*, defaults to `self.unet.config.sample_size/self.unet.config.sample_rate`): | |
The length of the generated audio sample in seconds. Note that the output of the pipeline, *i.e.* | |
`sample_size`, will be `audio_length_in_s` * `self.unet.sample_rate`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipeline_utils.AudioPipelineOutput`] instead of a plain tuple. | |
Returns: | |
[`~pipeline_utils.AudioPipelineOutput`] or `tuple`: [`~pipelines.utils.AudioPipelineOutput`] if | |
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the | |
generated images. | |
""" | |
if audio_length_in_s is None: | |
audio_length_in_s = self.unet.config.sample_size / self.unet.config.sample_rate | |
sample_size = audio_length_in_s * self.unet.sample_rate | |
down_scale_factor = 2 ** len(self.unet.up_blocks) | |
if sample_size < 3 * down_scale_factor: | |
raise ValueError( | |
f"{audio_length_in_s} is too small. Make sure it's bigger or equal to" | |
f" {3 * down_scale_factor / self.unet.sample_rate}." | |
) | |
original_sample_size = int(sample_size) | |
if sample_size % down_scale_factor != 0: | |
sample_size = ((audio_length_in_s * self.unet.sample_rate) // down_scale_factor + 1) * down_scale_factor | |
logger.info( | |
f"{audio_length_in_s} is increased to {sample_size / self.unet.sample_rate} so that it can be handled" | |
f" by the model. It will be cut to {original_sample_size / self.unet.sample_rate} after the denoising" | |
" process." | |
) | |
sample_size = int(sample_size) | |
dtype = next(iter(self.unet.parameters())).dtype | |
audio = torch.randn( | |
(batch_size, self.unet.in_channels, sample_size), generator=generator, device=self.device, dtype=dtype | |
) | |
# set step values | |
self.scheduler.set_timesteps(num_inference_steps, device=audio.device) | |
self.scheduler.timesteps = self.scheduler.timesteps.to(dtype) | |
for t in self.progress_bar(self.scheduler.timesteps): | |
# 1. predict noise model_output | |
model_output = self.unet(audio, t).sample | |
# 2. compute previous image: x_t -> t_t-1 | |
audio = self.scheduler.step(model_output, t, audio).prev_sample | |
audio = audio.clamp(-1, 1).float().cpu().numpy() | |
audio = audio[:, :, :original_sample_size] | |
if not return_dict: | |
return (audio,) | |
return AudioPipelineOutput(audios=audio) | |