Jackflack09's picture
Duplicate from YeOldHermit/Super-Resolution-Anime-Diffusion
522606a
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class SafetyConfig(object):
WEAK = {
"sld_warmup_steps": 15,
"sld_guidance_scale": 20,
"sld_threshold": 0.0,
"sld_momentum_scale": 0.0,
"sld_mom_beta": 0.0,
}
MEDIUM = {
"sld_warmup_steps": 10,
"sld_guidance_scale": 1000,
"sld_threshold": 0.01,
"sld_momentum_scale": 0.3,
"sld_mom_beta": 0.4,
}
STRONG = {
"sld_warmup_steps": 7,
"sld_guidance_scale": 2000,
"sld_threshold": 0.025,
"sld_momentum_scale": 0.5,
"sld_mom_beta": 0.7,
}
MAX = {
"sld_warmup_steps": 0,
"sld_guidance_scale": 5000,
"sld_threshold": 1.0,
"sld_momentum_scale": 0.5,
"sld_mom_beta": 0.7,
}
@dataclass
class StableDiffusionSafePipelineOutput(BaseOutput):
"""
Output class for Safe Stable Diffusion pipelines.
Args:
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
nsfw_content_detected (`List[bool]`)
List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, or `None` if safety checking could not be performed.
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images that were flagged by the safety checker any may contain "not-safe-for-work"
(nsfw) content, or `None` if no safety check was performed or no images were flagged.
applied_safety_concept (`str`)
The safety concept that was applied for safety guidance, or `None` if safety guidance was disabled
"""
images: Union[List[PIL.Image.Image], np.ndarray]
nsfw_content_detected: Optional[List[bool]]
unsafe_images: Optional[Union[List[PIL.Image.Image], np.ndarray]]
applied_safety_concept: Optional[str]
if is_transformers_available() and is_torch_available():
from .pipeline_stable_diffusion_safe import StableDiffusionPipelineSafe
from .safety_checker import SafeStableDiffusionSafetyChecker