File size: 12,126 Bytes
7c6792a
 
 
 
 
 
 
 
 
 
 
 
 
 
f325db1
7c6792a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c06ddef
7c6792a
 
 
 
 
 
 
 
 
 
 
 
 
c06ddef
 
 
 
 
 
 
 
7c6792a
 
 
 
 
 
 
c06ddef
7c6792a
 
f325db1
c06ddef
7c6792a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c06ddef
 
 
 
 
 
 
 
7c6792a
 
 
 
 
 
 
c06ddef
7c6792a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f325db1
 
 
 
7c6792a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c06ddef
7c6792a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c06ddef
 
 
 
 
7c6792a
 
 
c06ddef
7c6792a
 
 
 
 
 
 
 
 
c06ddef
 
 
 
 
 
 
7c6792a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
from matplotlib import pyplot as plt
from accelerate import Accelerator
from zero import zero
import gradio as gr
from typing import Tuple
import os
from os import path
from utils import plot_spec
import librosa
from hashlib import md5
from demucs.separate import main as demucs
from pyannote.audio import Pipeline
from json import dumps, loads
import shutil
import zipfile

accelerator = Accelerator()
device = accelerator.device
print(f"Running on {device}")

pipeline = Pipeline.from_pretrained(
    "pyannote/speaker-diarization-3.1", use_auth_token=os.environ["HF_TOKEN"]
)
pipeline.to(device)


tasks = []
os.makedirs("task", exist_ok=True)
for task in os.listdir("task"):
    if path.isdir(path.join("task", task)):
        tasks.append(task)


def gen_task_id(location: str):
    # use md5 hash of video file as task id
    video = open(location, "rb").read()
    return md5(video).hexdigest()


def extract_audio(video: str) -> Tuple[str, str]:
    task_id = gen_task_id(video)
    os.makedirs(path.join("task", task_id), exist_ok=True)

    videodest = path.join("task", task_id, "video.mp4")
    if not path.exists(videodest):
        shutil.copy(video, videodest)

    wav48k = path.join("task", task_id, "extracted_48k.wav")
    if not path.exists(wav48k):
        os.system(
            f"ffmpeg -i {videodest} -vn -ar 48000 task/{task_id}/extracted_48k.wav"
        )

    return (task_id, wav48k)


def extract_audio_post(task_id: str) -> str:
    wav48k = path.join("task", task_id, "extracted_48k.wav")
    if not path.exists(wav48k):
        raise gr.Error("Audio file not found")

    spec = path.join("task", task_id, "extracted_48k.png")
    if not path.exists(spec):
        y, sr = librosa.load(wav48k, sr=16000)
        fig = plot_spec(y, sr)
        fig.savefig(path.join("task", task_id, "extracted_48k.png"))
        plt.close(fig)

    return spec


@zero(duration=60 * 2)
def extract_vocals(task_id: str) -> str:
    audio = path.join("task", task_id, "extracted_48k.wav")
    if not path.exists(audio):
        raise gr.Error("Audio file not found")

    vocals = path.join("task", task_id, "htdemucs", "extracted_48k", "vocals.wav")

    if not path.exists(vocals):
        demucs(
            [
                "-d",
                str(device),
                "-n",
                "htdemucs",
                "--two-stems",
                "vocals",
                "-o",
                path.join("task", task_id),
                audio,
            ]
        )

    return vocals


def extract_vocals_post(task_id: str) -> str:
    vocals = path.join("task", task_id, "htdemucs", "extracted_48k", "vocals.wav")
    if not path.exists(vocals):
        raise gr.Error("Vocals file not found")

    spec = path.join("task", task_id, "vocals.png")
    if not path.exists(spec):
        y, sr = librosa.load(vocals, sr=16000)
        fig = plot_spec(y, sr)
        fig.savefig(path.join("task", task_id, "vocals.png"))
        plt.close(fig)

    return spec


@zero(duration=60 * 2)
def diarize_audio(task_id: str):
    vocals = path.join("task", task_id, "htdemucs", "extracted_48k", "vocals.wav")
    if not path.exists(vocals):
        raise gr.Error("Vocals file not found")

    diarization_json = path.join("task", task_id, "diarization.json")
    if not path.exists(diarization_json):
        result = pipeline(vocals)
        with open(diarization_json, "w") as f:
            diarization = []
            for turn, _, speaker in result.itertracks(yield_label=True):
                diarization.append(
                    {
                        "speaker": speaker,
                        "start": turn.start,
                        "end": turn.end,
                        "duration": turn.duration,
                    }
                )
            f.write(dumps(diarization))
    with open(diarization_json, "r") as f:
        diarization = loads(f.read())

    filtered_json = path.join("task", task_id, "filtered_diarization.json")
    if not path.exists(filtered_json):
        # Filter out segments shorter than 2 second and group by speaker
        filtered_segments = {}
        for turn in diarization:
            speaker = turn["speaker"]
            if turn["duration"] >= 2.0:
                if speaker not in filtered_segments:
                    filtered_segments[speaker] = []
                filtered_segments[speaker].append(turn)

        # Filter out speakers with less than 60 seconds of speech
        filtered_segments = {
            speaker: segments
            for speaker, segments in filtered_segments.items()
            if sum(segment["duration"] for segment in segments) >= 60
        }

        with open(filtered_json, "w") as f:
            f.write(dumps(filtered_segments))
    with open(filtered_json, "r") as f:
        filtered_segments = loads(f.read())

    return filtered_segments


def generate_clips(task_id: str, speaker: str) -> Tuple[str, str]:
    video = path.join("task", task_id, "video.mp4")
    if not path.exists(video):
        raise gr.Error("Video file not found")

    filtered_json = path.join("task", task_id, "filtered_diarization.json")
    if not path.exists(filtered_json):
        raise gr.Error("Diarization not found")

    with open(filtered_json, "r") as f:
        filtered_segments = loads(f.read())

    if speaker not in filtered_segments:
        raise gr.Error("Speaker not found")

    mp4 = path.join("task", task_id, f"{speaker}.mp4")
    if not path.exists(mp4):
        cmd = f'ffmpeg -i {video} -filter_complex "'
        for i, segment in enumerate(filtered_segments[speaker]):
            start = segment["start"]
            end = segment["end"]
            cmd += f"[0:v]trim=start={start}:end={end},setpts=PTS-STARTPTS[v{i}];"
            cmd += f"[0:a]atrim=start={start}:end={end},asetpts=PTS-STARTPTS[a{i}];"
        for i in range(len(filtered_segments[speaker])):
            cmd += f"[v{i}][a{i}]"
        cmd += f'concat=n={len(filtered_segments[speaker])}:v=1:a=1[outv][outa]" -map [outv] -map [outa] -y {mp4}'
        os.system(cmd)

    segments = path.join("task", task_id, f"{speaker}")
    if not path.exists(segments):
        os.makedirs(segments)
        for i, segment in enumerate(filtered_segments[speaker]):
            start = segment["start"]
            end = segment["end"]
            name = path.join(segments, f"{i}_{start:.2f}_{end:.2f}.wav")
            cmd = f"ffmpeg -i {video} -ss {start} -to {end} -f wav {name}"
            os.system(cmd)

    segments_zip = path.join("task", task_id, f"{speaker}.zip")
    if not path.exists(segments_zip):
        with zipfile.ZipFile(segments_zip, "w") as zipf:
            files = [f for f in os.listdir(segments) if f.endswith(".wav")]
            for file in files:
                zipf.write(path.join(segments, file), file)

    return mp4, segments_zip


with gr.Blocks() as app:
    gr.Markdown("# Video Speaker Diarization")

    gr.Markdown(
        """
    First, upload a video file. And let us do some inspection on the audio of the video.
    """
    )
    original_video = gr.Video(label="Upload a video", show_download_button=True)
    preprocess_btn = gr.Button(value="Pre Process", variant="primary")
    preprocess_btn_label = gr.Markdown("Press the button!")

    with gr.Column(visible=False) as preprocess_output:
        gr.Markdown(
            """
        Now you can see the spectrogram of the extracted audio.

        Next, let's remove the background music from the audio.
        """
        )
        task_id = gr.Textbox(label="Task ID", visible=False)
        extracted_audio = gr.Audio(label="Extracted Audio", type="filepath")
        extracted_audio_spec = gr.Image(label="Extracted Audio Spectrogram")

        extract_vocals_btn = gr.Button(
            value="Remove Background Music", variant="primary"
        )
        extract_vocals_btn_label = gr.Markdown("Press the button!")

    with gr.Column(visible=False) as extract_vocals_output:
        vocals = gr.Audio(label="Vocals", type="filepath")
        vocals_spec = gr.Image(label="Vocals Spectrogram")

        diarize_btn = gr.Button(value="Diarize", variant="primary")
        diarize_btn_label = gr.Markdown("Press the button!")

    with gr.Column(visible=False) as diarize_output:
        gr.Markdown(
            """
        Now you can select the speaker from the dropdown below to generate the clips of the speaker.
        """
        )
        speaker_select = gr.Dropdown(label="Speaker", choices=[])
        diarization_result = gr.Markdown("")

        generate_clips_btn = gr.Button(value="Generate Clips", variant="primary")
        generate_clips_btn_label = gr.Markdown("Press the button!")

    with gr.Column(visible=False) as generate_clips_output:
        speaker_clip = gr.Video(label="Speaker Clip")
        speaker_clip_zip = gr.File(label="Download Audio Segments")

    def preprocess(video: str):
        task_id_val, extracted_audio_val = extract_audio(video)
        return {
            preprocess_output: gr.Column(visible=True),
            task_id: task_id_val,
            extracted_audio: extracted_audio_val,
            preprocess_btn_label: gr.Markdown("", visible=False),
        }

    preprocess_btn.click(
        fn=preprocess,
        inputs=[original_video],
        outputs=[
            preprocess_output,
            task_id,
            extracted_audio,
            preprocess_btn_label,
        ],
        api_name="preprocess",
    ).success(
        fn=extract_audio_post,
        inputs=[task_id],
        outputs=[extracted_audio_spec],
        api_name="preprocess-post",
    )

    def extract_vocals_fn(task_id: str):
        vocals_val = extract_vocals(task_id)
        return {
            extract_vocals_output: gr.Column(visible=True),
            vocals: vocals_val,
            extract_vocals_btn_label: gr.Markdown("", visible=False),
        }

    extract_vocals_btn.click(
        fn=extract_vocals_fn,
        inputs=[task_id],
        outputs=[extract_vocals_output, vocals, extract_vocals_btn_label],
        api_name="extract-vocals",
    ).success(
        fn=extract_vocals_post,
        inputs=[task_id],
        outputs=[vocals_spec],
        api_name="extract-vocals-post",
    )

    def diarize_fn(task_id: str):
        filtered_segments = diarize_audio(task_id)
        choices = []
        for speaker in filtered_segments:
            total = sum(segment["duration"] for segment in filtered_segments[speaker])
            choices.append((f"{speaker} ({total:.2f}s)", speaker))

        info = ""
        for speaker, segments in filtered_segments.items():
            total = sum(segment["duration"] for segment in segments)
            info += f"### Speaker {speaker}: ({total:.2f}s)\n"
            for segment in segments:
                start = segment["start"]
                end = segment["end"]
                info += f"- {start:.2f} - {end:.2f} ({segment['duration']:.2f}s)\n"
        return {
            diarize_output: gr.Column(visible=True),
            speaker_select: gr.Dropdown(label="Speaker", choices=choices),
            diarization_result: gr.Markdown(info),
            diarize_btn_label: gr.Markdown("", visible=False),
        }

    diarize_btn.click(
        fn=diarize_fn,
        inputs=[task_id],
        outputs=[diarize_output, speaker_select, diarization_result, diarize_btn_label],
        api_name="diarize",
    )

    def generate_clips_fn(task_id: str, speaker: str):
        speaker_clip_val, zip_val = generate_clips(task_id, speaker)
        return {
            generate_clips_output: gr.Column(visible=True),
            speaker_clip: speaker_clip_val,
            speaker_clip_zip: zip_val,
            generate_clips_btn_label: gr.Markdown("", visible=False),
        }

    generate_clips_btn.click(
        fn=generate_clips_fn,
        inputs=[task_id, speaker_select],
        outputs=[
            generate_clips_output,
            speaker_clip,
            speaker_clip_zip,
            generate_clips_btn_label,
        ],
        api_name="generate_clips",
    )

    app.launch()