from matplotlib import pyplot as plt from accelerate import Accelerator from zero import zero import gradio as gr from typing import Tuple import os from os import path from utils import plot_spec import librosa from hashlib import md5 from demucs.separate import main as demucs from pyannote.audio import Pipeline from json import dumps, loads import shutil import zipfile accelerator = Accelerator() device = accelerator.device print(f"Running on {device}") pipeline = Pipeline.from_pretrained( "pyannote/speaker-diarization-3.1", use_auth_token=os.environ["HF_TOKEN"] ) pipeline.to(device) tasks = [] os.makedirs("task", exist_ok=True) for task in os.listdir("task"): if path.isdir(path.join("task", task)): tasks.append(task) def gen_task_id(location: str): # use md5 hash of video file as task id video = open(location, "rb").read() return md5(video).hexdigest() def extract_audio(video: str) -> Tuple[str, str]: task_id = gen_task_id(video) os.makedirs(path.join("task", task_id), exist_ok=True) videodest = path.join("task", task_id, "video.mp4") if not path.exists(videodest): shutil.copy(video, videodest) wav48k = path.join("task", task_id, "extracted_48k.wav") if not path.exists(wav48k): os.system( f"ffmpeg -i {videodest} -vn -ar 48000 task/{task_id}/extracted_48k.wav" ) return (task_id, wav48k) def extract_audio_post(task_id: str) -> str: wav48k = path.join("task", task_id, "extracted_48k.wav") if not path.exists(wav48k): raise gr.Error("Audio file not found") spec = path.join("task", task_id, "extracted_48k.png") if not path.exists(spec): y, sr = librosa.load(wav48k, sr=16000) fig = plot_spec(y, sr) fig.savefig(path.join("task", task_id, "extracted_48k.png")) plt.close(fig) return spec @zero(duration=60 * 2) def extract_vocals(task_id: str) -> str: audio = path.join("task", task_id, "extracted_48k.wav") if not path.exists(audio): raise gr.Error("Audio file not found") vocals = path.join("task", task_id, "htdemucs", "extracted_48k", "vocals.wav") if not path.exists(vocals): demucs( [ "-d", str(device), "-n", "htdemucs", "--two-stems", "vocals", "-o", path.join("task", task_id), audio, ] ) return vocals def extract_vocals_post(task_id: str) -> str: vocals = path.join("task", task_id, "htdemucs", "extracted_48k", "vocals.wav") if not path.exists(vocals): raise gr.Error("Vocals file not found") spec = path.join("task", task_id, "vocals.png") if not path.exists(spec): y, sr = librosa.load(vocals, sr=16000) fig = plot_spec(y, sr) fig.savefig(path.join("task", task_id, "vocals.png")) plt.close(fig) return spec @zero(duration=60 * 2) def diarize_audio(task_id: str): vocals = path.join("task", task_id, "htdemucs", "extracted_48k", "vocals.wav") if not path.exists(vocals): raise gr.Error("Vocals file not found") diarization_json = path.join("task", task_id, "diarization.json") if not path.exists(diarization_json): result = pipeline(vocals) with open(diarization_json, "w") as f: diarization = [] for turn, _, speaker in result.itertracks(yield_label=True): diarization.append( { "speaker": speaker, "start": turn.start, "end": turn.end, "duration": turn.duration, } ) f.write(dumps(diarization)) with open(diarization_json, "r") as f: diarization = loads(f.read()) filtered_json = path.join("task", task_id, "filtered_diarization.json") if not path.exists(filtered_json): # Filter out segments shorter than 2 second and group by speaker filtered_segments = {} for turn in diarization: speaker = turn["speaker"] if turn["duration"] >= 2.0: if speaker not in filtered_segments: filtered_segments[speaker] = [] filtered_segments[speaker].append(turn) # Filter out speakers with less than 60 seconds of speech filtered_segments = { speaker: segments for speaker, segments in filtered_segments.items() if sum(segment["duration"] for segment in segments) >= 60 } with open(filtered_json, "w") as f: f.write(dumps(filtered_segments)) with open(filtered_json, "r") as f: filtered_segments = loads(f.read()) return filtered_segments def generate_clips(task_id: str, speaker: str) -> Tuple[str, str]: video = path.join("task", task_id, "video.mp4") if not path.exists(video): raise gr.Error("Video file not found") filtered_json = path.join("task", task_id, "filtered_diarization.json") if not path.exists(filtered_json): raise gr.Error("Diarization not found") with open(filtered_json, "r") as f: filtered_segments = loads(f.read()) if speaker not in filtered_segments: raise gr.Error("Speaker not found") mp4 = path.join("task", task_id, f"{speaker}.mp4") if not path.exists(mp4): cmd = f'ffmpeg -i {video} -filter_complex "' for i, segment in enumerate(filtered_segments[speaker]): start = segment["start"] end = segment["end"] cmd += f"[0:v]trim=start={start}:end={end},setpts=PTS-STARTPTS[v{i}];" cmd += f"[0:a]atrim=start={start}:end={end},asetpts=PTS-STARTPTS[a{i}];" for i in range(len(filtered_segments[speaker])): cmd += f"[v{i}][a{i}]" cmd += f'concat=n={len(filtered_segments[speaker])}:v=1:a=1[outv][outa]" -map [outv] -map [outa] -y {mp4}' os.system(cmd) segments = path.join("task", task_id, f"{speaker}") if not path.exists(segments): os.makedirs(segments) for i, segment in enumerate(filtered_segments[speaker]): start = segment["start"] end = segment["end"] name = path.join(segments, f"{i}_{start:.2f}_{end:.2f}.wav") cmd = f"ffmpeg -i {video} -ss {start} -to {end} -f wav {name}" os.system(cmd) segments_zip = path.join("task", task_id, f"{speaker}.zip") if not path.exists(segments_zip): with zipfile.ZipFile(segments_zip, "w") as zipf: files = [f for f in os.listdir(segments) if f.endswith(".wav")] for file in files: zipf.write(path.join(segments, file), file) return mp4, segments_zip with gr.Blocks() as app: gr.Markdown("# Video Speaker Diarization") gr.Markdown( """ First, upload a video file. And let us do some inspection on the audio of the video. """ ) original_video = gr.Video(label="Upload a video", show_download_button=True) preprocess_btn = gr.Button(value="Pre Process", variant="primary") preprocess_btn_label = gr.Markdown("Press the button!") with gr.Column(visible=False) as preprocess_output: gr.Markdown( """ Now you can see the spectrogram of the extracted audio. Next, let's remove the background music from the audio. """ ) task_id = gr.Textbox(label="Task ID", visible=False) extracted_audio = gr.Audio(label="Extracted Audio", type="filepath") extracted_audio_spec = gr.Image(label="Extracted Audio Spectrogram") extract_vocals_btn = gr.Button( value="Remove Background Music", variant="primary" ) extract_vocals_btn_label = gr.Markdown("Press the button!") with gr.Column(visible=False) as extract_vocals_output: vocals = gr.Audio(label="Vocals", type="filepath") vocals_spec = gr.Image(label="Vocals Spectrogram") diarize_btn = gr.Button(value="Diarize", variant="primary") diarize_btn_label = gr.Markdown("Press the button!") with gr.Column(visible=False) as diarize_output: gr.Markdown( """ Now you can select the speaker from the dropdown below to generate the clips of the speaker. """ ) speaker_select = gr.Dropdown(label="Speaker", choices=[]) diarization_result = gr.Markdown("") generate_clips_btn = gr.Button(value="Generate Clips", variant="primary") generate_clips_btn_label = gr.Markdown("Press the button!") with gr.Column(visible=False) as generate_clips_output: speaker_clip = gr.Video(label="Speaker Clip") speaker_clip_zip = gr.File(label="Download Audio Segments") def preprocess(video: str): task_id_val, extracted_audio_val = extract_audio(video) return { preprocess_output: gr.Column(visible=True), task_id: task_id_val, extracted_audio: extracted_audio_val, preprocess_btn_label: gr.Markdown("", visible=False), } preprocess_btn.click( fn=preprocess, inputs=[original_video], outputs=[ preprocess_output, task_id, extracted_audio, preprocess_btn_label, ], api_name="preprocess", ).success( fn=extract_audio_post, inputs=[task_id], outputs=[extracted_audio_spec], api_name="preprocess-post", ) def extract_vocals_fn(task_id: str): vocals_val = extract_vocals(task_id) return { extract_vocals_output: gr.Column(visible=True), vocals: vocals_val, extract_vocals_btn_label: gr.Markdown("", visible=False), } extract_vocals_btn.click( fn=extract_vocals_fn, inputs=[task_id], outputs=[extract_vocals_output, vocals, extract_vocals_btn_label], api_name="extract-vocals", ).success( fn=extract_vocals_post, inputs=[task_id], outputs=[vocals_spec], api_name="extract-vocals-post", ) def diarize_fn(task_id: str): filtered_segments = diarize_audio(task_id) choices = [] for speaker in filtered_segments: total = sum(segment["duration"] for segment in filtered_segments[speaker]) choices.append((f"{speaker} ({total:.2f}s)", speaker)) info = "" for speaker, segments in filtered_segments.items(): total = sum(segment["duration"] for segment in segments) info += f"### Speaker {speaker}: ({total:.2f}s)\n" for segment in segments: start = segment["start"] end = segment["end"] info += f"- {start:.2f} - {end:.2f} ({segment['duration']:.2f}s)\n" return { diarize_output: gr.Column(visible=True), speaker_select: gr.Dropdown(label="Speaker", choices=choices), diarization_result: gr.Markdown(info), diarize_btn_label: gr.Markdown("", visible=False), } diarize_btn.click( fn=diarize_fn, inputs=[task_id], outputs=[diarize_output, speaker_select, diarization_result, diarize_btn_label], api_name="diarize", ) def generate_clips_fn(task_id: str, speaker: str): speaker_clip_val, zip_val = generate_clips(task_id, speaker) return { generate_clips_output: gr.Column(visible=True), speaker_clip: speaker_clip_val, speaker_clip_zip: zip_val, generate_clips_btn_label: gr.Markdown("", visible=False), } generate_clips_btn.click( fn=generate_clips_fn, inputs=[task_id, speaker_select], outputs=[ generate_clips_output, speaker_clip, speaker_clip_zip, generate_clips_btn_label, ], api_name="generate_clips", ) app.launch()