ZeroRVC / zerorvc /rvc.py
github-actions[bot]
Sync to HuggingFace Spaces
b4d60ce
from logging import getLogger
import numpy as np
import torch
import torch.nn.functional as F
import librosa
from accelerate import Accelerator
from datasets import Dataset
from .f0 import F0Extractor, RMVPE, load_rmvpe
from .hubert import HubertFeatureExtractor, HubertModel, load_hubert
from .synthesizer import SynthesizerTrnMs768NSFsid
from .constants import *
logger = getLogger(__name__)
class RVC:
"""
RVC (Retrieval-based Voice Conversion) class for converting speech using a pre-trained model.
Args:
name (str | SynthesizerTrnMs768NSFsid): The name of the pre-trained model or the model instance itself.
sr (int, optional): The sample rate of the input audio. Defaults to SR_48K.
segment_size (float, optional): The segment size for splitting the input audio. Defaults to 30.0 seconds.
hubert (str | HubertModel | None, optional): The name of the pre-trained Hubert model or the model instance itself. Defaults to None.
rmvpe (str | RMVPE | None, optional): The name of the pre-trained RMVPE model or the model instance itself. Defaults to None.
accelerator (Accelerator, optional): The accelerator device for model inference. Defaults to Accelerator().
from_pretrained_kwargs (dict, optional): Additional keyword arguments for loading the pre-trained model. Defaults to {}.
Methods:
from_pretrained(name, sr=SR_48K, hubert=None, rmvpe=None, accelerator=Accelerator(), **from_pretrained_kwargs):
Creates an instance of RVC using the from_pretrained method.
convert(audio, protect=0.33):
Converts the input audio to the target voice using the pre-trained model.
convert_dataset(dataset, protect=0.33):
Converts a dataset of audio samples to the target voice using the pre-trained model.
convert_file(audio, protect=0.33):
Converts a single audio file to the target voice using the pre-trained model.
convert_from_wav16k(wav16k, protect=0.33):
Converts a 16kHz waveform to the target voice using the pre-trained model.
convert_from_features(phone, pitchf, pitch, protect=0.33):
Converts audio features (phone, pitchf, pitch) to the target voice using the pre-trained model.
"""
def __init__(
self,
name: str | SynthesizerTrnMs768NSFsid,
sr=SR_48K,
segment_size=30.0,
hubert: str | HubertModel | None = None,
rmvpe: str | RMVPE | None = None,
accelerator: Accelerator = Accelerator(),
from_pretrained_kwargs={},
):
"""
Initializes an instance of the RVC class.
Args:
name (str | SynthesizerTrnMs768NSFsid): The name of the pre-trained model or the model instance itself.
sr (int, optional): The sample rate of the input audio. Defaults to SR_48K.
hubert (str | HubertModel | None, optional): The name of the pre-trained Hubert model or the model instance itself. Defaults to None.
rmvpe (str | RMVPE | None, optional): The name of the pre-trained RMVPE model or the model instance itself. Defaults to None.
accelerator (Accelerator, optional): The accelerator device for model inference. Defaults to Accelerator().
from_pretrained_kwargs (dict, optional): Additional keyword arguments for loading the pre-trained model. Defaults to {}.
"""
self.model = (
SynthesizerTrnMs768NSFsid.from_pretrained(name, **from_pretrained_kwargs)
if isinstance(name, str)
else name
)
self.model = self.model.to(accelerator.device)
self.sr = sr
self.segment_size = segment_size
self.hubert = HubertFeatureExtractor(load_hubert(hubert, accelerator.device))
self.rmvpe = F0Extractor(load_rmvpe(rmvpe, accelerator.device))
self.accelerator = accelerator
@staticmethod
def from_pretrained(
name: str,
sr=SR_48K,
segment_size=30.0,
hubert: str | HubertModel | None = None,
rmvpe: str | RMVPE | None = None,
accelerator: Accelerator = Accelerator(),
**from_pretrained_kwargs,
):
"""
Creates an instance of RVC using the from_pretrained method.
Args:
name (str): The name of the pre-trained model.
sr (int, optional): The sample rate of the input audio. Defaults to SR_48K.
segment_size (float, optional): The segment size for splitting the input audio. Defaults to 30.0 seconds.
hubert (str | HubertModel | None, optional): The name of the pre-trained Hubert model or the model instance itself. Defaults to None.
rmvpe (str | RMVPE | None, optional): The name of the pre-trained RMVPE model or the model instance itself. Defaults to None.
accelerator (Accelerator, optional): The accelerator device for model inference. Defaults to Accelerator().
from_pretrained_kwargs (dict): Additional keyword arguments for loading the pre-trained model.
Returns:
RVC: An instance of the RVC class.
"""
return RVC(
name, sr, segment_size, hubert, rmvpe, accelerator, from_pretrained_kwargs
)
def convert(
self, audio: str | Dataset | np.ndarray, protect=0.33, pitch_modification=0.0
):
"""
Converts the input audio to the target voice using the pre-trained model.
Args:
audio (str | Dataset | np.ndarray): The input audio to be converted. It can be a file path, a dataset of audio samples, or a numpy array.
protect (float, optional): The protection factor for preserving the original voice. Defaults to 0.33.
pitch_modification (float, optional): The pitch modification factor. Defaults to 0.0.
Returns:
np.ndarray: The converted audio in the target voice.
If the input is a dataset, it yields the converted audio samples one by one.
"""
logger.info(
f"audio: {audio}, protect: {protect}, pitch_modification: {pitch_modification}"
)
if isinstance(audio, str):
return self.convert_file(audio, protect, pitch_modification)
if isinstance(audio, Dataset):
return self.convert_dataset(audio, protect, pitch_modification)
return self.convert_from_wav16k(audio, protect, pitch_modification)
def convert_dataset(self, dataset: Dataset, protect=0.33, pitch_modification=0.0):
"""
Converts a dataset of audio samples to the target voice using the pre-trained model.
Args:
dataset (Dataset): The dataset of audio samples to be converted.
protect (float, optional): The protection factor for preserving the original voice. Defaults to 0.33.
pitch_modification (float, optional): The pitch modification factor. Defaults to 0.0.
Yields:
np.ndarray: The converted audio samples in the target voice.
"""
for i, data in enumerate(dataset):
logger.info(f"Converting data {i}")
phone = data["hubert_feats"]
pitchf = data["f0nsf"]
pitch = data["f0"]
yield self.convert_from_features(
phone, pitchf, pitch, protect, pitch_modification
)
def convert_file(
self, audio: str, protect=0.33, pitch_modification=0.0
) -> np.ndarray:
"""
Converts a single audio file to the target voice using the pre-trained model.
Args:
audio (str): The path to the audio file to be converted.
protect (float, optional): The protection factor for preserving the original voice. Defaults to 0.33.
pitch_modification (float, optional): The pitch modification factor. Defaults to 0.0.
Returns:
np.ndarray: The converted audio in the target voice.
"""
wav16k, _ = librosa.load(audio, sr=SR_16K)
logger.info(f"Loaded {audio} with shape {wav16k.shape}")
return self.convert_from_wav16k(wav16k, protect, pitch_modification)
def convert_from_wav16k(
self, wav16k: np.ndarray, protect=0.33, pitch_modification=0.0
) -> np.ndarray:
"""
Converts a 16kHz waveform to the target voice using the pre-trained model.
Args:
wav16k (np.ndarray): The 16kHz waveform to be converted.
protect (float, optional): The protection factor for preserving the original voice. Defaults to 0.33.
pitch_modification (float, optional): The pitch modification factor. Defaults to 0.0.
Returns:
np.ndarray: The converted audio in the target voice.
"""
ret = []
segment_size = int(self.segment_size * SR_16K)
for i in range(0, len(wav16k), segment_size):
segment = wav16k[i : i + segment_size]
segment = np.pad(segment, (SR_16K, SR_16K), mode="reflect")
logger.info(f"Padded audio with shape {segment.shape}")
pitchf, pitch = self.rmvpe.extract_f0_from(segment)
phone = self.hubert.extract_feature_from(segment)
ret.append(
self.convert_from_features(
phone, pitchf, pitch, protect, pitch_modification
)[self.sr : -self.sr]
)
return np.concatenate(ret)
def convert_from_features(
self,
phone: np.ndarray,
pitchf: np.ndarray,
pitch: np.ndarray,
protect=0.33,
pitch_modification=0.0,
) -> np.ndarray:
"""
Converts audio features (phone, pitchf, pitch) to the target voice using the pre-trained model.
Args:
phone (np.ndarray): The phone features of the audio.
pitchf (np.ndarray): The pitch features of the audio.
pitch (np.ndarray): The pitch values of the audio.
protect (float, optional): The protection factor for preserving the original voice. Defaults to 0.33.
pitch_modification (float, optional): The pitch modification factor. Defaults to 0.0.
Returns:
np.ndarray: The converted audio in the target voice.
"""
use_protect = protect < 0.5
if not np.isclose(pitch_modification, 0.0):
pitchf *= pow(2, pitch_modification / 12)
pitch = self.rmvpe.calculate_f0_from_f0nsf(pitchf)
pitchf = np.expand_dims(pitchf, axis=0)
pitch = np.expand_dims(pitch, axis=0)
phone = np.expand_dims(phone, axis=0)
self.model.eval()
with torch.no_grad(), self.accelerator.device:
pitchf = torch.from_numpy(pitchf).to(
dtype=torch.float32, device=self.accelerator.device
)
pitch = torch.from_numpy(pitch).to(
dtype=torch.long, device=self.accelerator.device
)
phone = torch.from_numpy(phone).to(
dtype=torch.float32, device=self.accelerator.device
)
if use_protect:
feats0 = phone.clone()
feats: torch.Tensor = F.interpolate(
phone.permute(0, 2, 1), scale_factor=2
).permute(0, 2, 1)
if use_protect:
feats0: torch.Tensor = F.interpolate(
feats0.permute(0, 2, 1), scale_factor=2
).permute(0, 2, 1)
# It's originally like this, but I think it's ok to assume that feats.shape[1] <= phone_len
# maybe we should use the same crop function from preprocessor
# phone_len = wav16k.shape[0] // 160
# if feats.shape[1] < phone_len:
# ...
phone_len = feats.shape[1]
pitch = pitch[:, :phone_len]
pitchf = pitchf[:, :phone_len]
if use_protect:
pitchff = pitchf.clone()
pitchff[pitchf > 0] = 1
pitchff[pitchf < 1] = protect
pitchff = pitchff.unsqueeze(-1)
feats = feats * pitchff + feats0 * (1 - pitchff)
feats = feats.to(feats0.dtype)
phone_len = torch.tensor([phone_len], dtype=torch.long)
sid = torch.tensor([0], dtype=torch.long)
logger.info(f"Feats shape: {feats.shape}")
logger.info(f"Phone len: {phone_len}")
logger.info(f"Pitch shape: {pitch.shape}")
logger.info(f"Pitchf shape: {pitchf.shape}")
logger.info(f"SID shape: {sid}")
audio_segment = (
self.model.infer(feats, phone_len, pitch, pitchf, sid)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
logger.info(
f"Generated audio shape: {audio_segment.shape} {audio_segment.dtype}"
)
return audio_segment