Spaces:
Runtime error
Runtime error
from logging import getLogger | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import librosa | |
from accelerate import Accelerator | |
from datasets import Dataset | |
from .f0 import F0Extractor, RMVPE, load_rmvpe | |
from .hubert import HubertFeatureExtractor, HubertModel, load_hubert | |
from .synthesizer import SynthesizerTrnMs768NSFsid | |
from .constants import * | |
logger = getLogger(__name__) | |
class RVC: | |
""" | |
RVC (Retrieval-based Voice Conversion) class for converting speech using a pre-trained model. | |
Args: | |
name (str | SynthesizerTrnMs768NSFsid): The name of the pre-trained model or the model instance itself. | |
sr (int, optional): The sample rate of the input audio. Defaults to SR_48K. | |
segment_size (float, optional): The segment size for splitting the input audio. Defaults to 30.0 seconds. | |
hubert (str | HubertModel | None, optional): The name of the pre-trained Hubert model or the model instance itself. Defaults to None. | |
rmvpe (str | RMVPE | None, optional): The name of the pre-trained RMVPE model or the model instance itself. Defaults to None. | |
accelerator (Accelerator, optional): The accelerator device for model inference. Defaults to Accelerator(). | |
from_pretrained_kwargs (dict, optional): Additional keyword arguments for loading the pre-trained model. Defaults to {}. | |
Methods: | |
from_pretrained(name, sr=SR_48K, hubert=None, rmvpe=None, accelerator=Accelerator(), **from_pretrained_kwargs): | |
Creates an instance of RVC using the from_pretrained method. | |
convert(audio, protect=0.33): | |
Converts the input audio to the target voice using the pre-trained model. | |
convert_dataset(dataset, protect=0.33): | |
Converts a dataset of audio samples to the target voice using the pre-trained model. | |
convert_file(audio, protect=0.33): | |
Converts a single audio file to the target voice using the pre-trained model. | |
convert_from_wav16k(wav16k, protect=0.33): | |
Converts a 16kHz waveform to the target voice using the pre-trained model. | |
convert_from_features(phone, pitchf, pitch, protect=0.33): | |
Converts audio features (phone, pitchf, pitch) to the target voice using the pre-trained model. | |
""" | |
def __init__( | |
self, | |
name: str | SynthesizerTrnMs768NSFsid, | |
sr=SR_48K, | |
segment_size=30.0, | |
hubert: str | HubertModel | None = None, | |
rmvpe: str | RMVPE | None = None, | |
accelerator: Accelerator = Accelerator(), | |
from_pretrained_kwargs={}, | |
): | |
""" | |
Initializes an instance of the RVC class. | |
Args: | |
name (str | SynthesizerTrnMs768NSFsid): The name of the pre-trained model or the model instance itself. | |
sr (int, optional): The sample rate of the input audio. Defaults to SR_48K. | |
hubert (str | HubertModel | None, optional): The name of the pre-trained Hubert model or the model instance itself. Defaults to None. | |
rmvpe (str | RMVPE | None, optional): The name of the pre-trained RMVPE model or the model instance itself. Defaults to None. | |
accelerator (Accelerator, optional): The accelerator device for model inference. Defaults to Accelerator(). | |
from_pretrained_kwargs (dict, optional): Additional keyword arguments for loading the pre-trained model. Defaults to {}. | |
""" | |
self.model = ( | |
SynthesizerTrnMs768NSFsid.from_pretrained(name, **from_pretrained_kwargs) | |
if isinstance(name, str) | |
else name | |
) | |
self.model = self.model.to(accelerator.device) | |
self.sr = sr | |
self.segment_size = segment_size | |
self.hubert = HubertFeatureExtractor(load_hubert(hubert, accelerator.device)) | |
self.rmvpe = F0Extractor(load_rmvpe(rmvpe, accelerator.device)) | |
self.accelerator = accelerator | |
def from_pretrained( | |
name: str, | |
sr=SR_48K, | |
segment_size=30.0, | |
hubert: str | HubertModel | None = None, | |
rmvpe: str | RMVPE | None = None, | |
accelerator: Accelerator = Accelerator(), | |
**from_pretrained_kwargs, | |
): | |
""" | |
Creates an instance of RVC using the from_pretrained method. | |
Args: | |
name (str): The name of the pre-trained model. | |
sr (int, optional): The sample rate of the input audio. Defaults to SR_48K. | |
segment_size (float, optional): The segment size for splitting the input audio. Defaults to 30.0 seconds. | |
hubert (str | HubertModel | None, optional): The name of the pre-trained Hubert model or the model instance itself. Defaults to None. | |
rmvpe (str | RMVPE | None, optional): The name of the pre-trained RMVPE model or the model instance itself. Defaults to None. | |
accelerator (Accelerator, optional): The accelerator device for model inference. Defaults to Accelerator(). | |
from_pretrained_kwargs (dict): Additional keyword arguments for loading the pre-trained model. | |
Returns: | |
RVC: An instance of the RVC class. | |
""" | |
return RVC( | |
name, sr, segment_size, hubert, rmvpe, accelerator, from_pretrained_kwargs | |
) | |
def convert( | |
self, audio: str | Dataset | np.ndarray, protect=0.33, pitch_modification=0.0 | |
): | |
""" | |
Converts the input audio to the target voice using the pre-trained model. | |
Args: | |
audio (str | Dataset | np.ndarray): The input audio to be converted. It can be a file path, a dataset of audio samples, or a numpy array. | |
protect (float, optional): The protection factor for preserving the original voice. Defaults to 0.33. | |
pitch_modification (float, optional): The pitch modification factor. Defaults to 0.0. | |
Returns: | |
np.ndarray: The converted audio in the target voice. | |
If the input is a dataset, it yields the converted audio samples one by one. | |
""" | |
logger.info( | |
f"audio: {audio}, protect: {protect}, pitch_modification: {pitch_modification}" | |
) | |
if isinstance(audio, str): | |
return self.convert_file(audio, protect, pitch_modification) | |
if isinstance(audio, Dataset): | |
return self.convert_dataset(audio, protect, pitch_modification) | |
return self.convert_from_wav16k(audio, protect, pitch_modification) | |
def convert_dataset(self, dataset: Dataset, protect=0.33, pitch_modification=0.0): | |
""" | |
Converts a dataset of audio samples to the target voice using the pre-trained model. | |
Args: | |
dataset (Dataset): The dataset of audio samples to be converted. | |
protect (float, optional): The protection factor for preserving the original voice. Defaults to 0.33. | |
pitch_modification (float, optional): The pitch modification factor. Defaults to 0.0. | |
Yields: | |
np.ndarray: The converted audio samples in the target voice. | |
""" | |
for i, data in enumerate(dataset): | |
logger.info(f"Converting data {i}") | |
phone = data["hubert_feats"] | |
pitchf = data["f0nsf"] | |
pitch = data["f0"] | |
yield self.convert_from_features( | |
phone, pitchf, pitch, protect, pitch_modification | |
) | |
def convert_file( | |
self, audio: str, protect=0.33, pitch_modification=0.0 | |
) -> np.ndarray: | |
""" | |
Converts a single audio file to the target voice using the pre-trained model. | |
Args: | |
audio (str): The path to the audio file to be converted. | |
protect (float, optional): The protection factor for preserving the original voice. Defaults to 0.33. | |
pitch_modification (float, optional): The pitch modification factor. Defaults to 0.0. | |
Returns: | |
np.ndarray: The converted audio in the target voice. | |
""" | |
wav16k, _ = librosa.load(audio, sr=SR_16K) | |
logger.info(f"Loaded {audio} with shape {wav16k.shape}") | |
return self.convert_from_wav16k(wav16k, protect, pitch_modification) | |
def convert_from_wav16k( | |
self, wav16k: np.ndarray, protect=0.33, pitch_modification=0.0 | |
) -> np.ndarray: | |
""" | |
Converts a 16kHz waveform to the target voice using the pre-trained model. | |
Args: | |
wav16k (np.ndarray): The 16kHz waveform to be converted. | |
protect (float, optional): The protection factor for preserving the original voice. Defaults to 0.33. | |
pitch_modification (float, optional): The pitch modification factor. Defaults to 0.0. | |
Returns: | |
np.ndarray: The converted audio in the target voice. | |
""" | |
ret = [] | |
segment_size = int(self.segment_size * SR_16K) | |
for i in range(0, len(wav16k), segment_size): | |
segment = wav16k[i : i + segment_size] | |
segment = np.pad(segment, (SR_16K, SR_16K), mode="reflect") | |
logger.info(f"Padded audio with shape {segment.shape}") | |
pitchf, pitch = self.rmvpe.extract_f0_from(segment) | |
phone = self.hubert.extract_feature_from(segment) | |
ret.append( | |
self.convert_from_features( | |
phone, pitchf, pitch, protect, pitch_modification | |
)[self.sr : -self.sr] | |
) | |
return np.concatenate(ret) | |
def convert_from_features( | |
self, | |
phone: np.ndarray, | |
pitchf: np.ndarray, | |
pitch: np.ndarray, | |
protect=0.33, | |
pitch_modification=0.0, | |
) -> np.ndarray: | |
""" | |
Converts audio features (phone, pitchf, pitch) to the target voice using the pre-trained model. | |
Args: | |
phone (np.ndarray): The phone features of the audio. | |
pitchf (np.ndarray): The pitch features of the audio. | |
pitch (np.ndarray): The pitch values of the audio. | |
protect (float, optional): The protection factor for preserving the original voice. Defaults to 0.33. | |
pitch_modification (float, optional): The pitch modification factor. Defaults to 0.0. | |
Returns: | |
np.ndarray: The converted audio in the target voice. | |
""" | |
use_protect = protect < 0.5 | |
if not np.isclose(pitch_modification, 0.0): | |
pitchf *= pow(2, pitch_modification / 12) | |
pitch = self.rmvpe.calculate_f0_from_f0nsf(pitchf) | |
pitchf = np.expand_dims(pitchf, axis=0) | |
pitch = np.expand_dims(pitch, axis=0) | |
phone = np.expand_dims(phone, axis=0) | |
self.model.eval() | |
with torch.no_grad(), self.accelerator.device: | |
pitchf = torch.from_numpy(pitchf).to( | |
dtype=torch.float32, device=self.accelerator.device | |
) | |
pitch = torch.from_numpy(pitch).to( | |
dtype=torch.long, device=self.accelerator.device | |
) | |
phone = torch.from_numpy(phone).to( | |
dtype=torch.float32, device=self.accelerator.device | |
) | |
if use_protect: | |
feats0 = phone.clone() | |
feats: torch.Tensor = F.interpolate( | |
phone.permute(0, 2, 1), scale_factor=2 | |
).permute(0, 2, 1) | |
if use_protect: | |
feats0: torch.Tensor = F.interpolate( | |
feats0.permute(0, 2, 1), scale_factor=2 | |
).permute(0, 2, 1) | |
# It's originally like this, but I think it's ok to assume that feats.shape[1] <= phone_len | |
# maybe we should use the same crop function from preprocessor | |
# phone_len = wav16k.shape[0] // 160 | |
# if feats.shape[1] < phone_len: | |
# ... | |
phone_len = feats.shape[1] | |
pitch = pitch[:, :phone_len] | |
pitchf = pitchf[:, :phone_len] | |
if use_protect: | |
pitchff = pitchf.clone() | |
pitchff[pitchf > 0] = 1 | |
pitchff[pitchf < 1] = protect | |
pitchff = pitchff.unsqueeze(-1) | |
feats = feats * pitchff + feats0 * (1 - pitchff) | |
feats = feats.to(feats0.dtype) | |
phone_len = torch.tensor([phone_len], dtype=torch.long) | |
sid = torch.tensor([0], dtype=torch.long) | |
logger.info(f"Feats shape: {feats.shape}") | |
logger.info(f"Phone len: {phone_len}") | |
logger.info(f"Pitch shape: {pitch.shape}") | |
logger.info(f"Pitchf shape: {pitchf.shape}") | |
logger.info(f"SID shape: {sid}") | |
audio_segment = ( | |
self.model.infer(feats, phone_len, pitch, pitchf, sid)[0][0, 0] | |
.data.cpu() | |
.float() | |
.numpy() | |
) | |
logger.info( | |
f"Generated audio shape: {audio_segment.shape} {audio_segment.dtype}" | |
) | |
return audio_segment | |