Spaces:
Paused
Paused
JacobLinCool
commited on
Commit
•
38548f2
1
Parent(s):
3a010aa
feat: better ui
Browse files- app.py +30 -436
- app/__init__.py +0 -0
- app/export.py +79 -0
- app/extract.py +64 -0
- app/infer.py +110 -0
- app/setup.py +110 -0
- app/train.py +191 -0
- configs/config.py +1 -1
- infer/modules/vc/modules.py +4 -4
app.py
CHANGED
@@ -1,459 +1,53 @@
|
|
1 |
-
from typing import Tuple
|
2 |
from prelude import prelude
|
3 |
|
4 |
prelude()
|
5 |
|
6 |
-
import os
|
7 |
-
import traceback
|
8 |
-
import numpy as np
|
9 |
-
from sklearn.cluster import MiniBatchKMeans
|
10 |
-
from random import shuffle
|
11 |
import gradio as gr
|
12 |
-
import
|
13 |
-
import
|
14 |
-
import
|
15 |
-
import
|
16 |
-
from
|
17 |
-
from infer.modules.train.preprocess import PreProcess
|
18 |
-
from infer.modules.train.extract.extract_f0_rmvpe import FeatureInput
|
19 |
-
from infer.modules.train.extract_feature_print import HubertFeatureExtractor
|
20 |
-
from infer.modules.train.train import train
|
21 |
-
from infer.lib.train.process_ckpt import extract_small_model
|
22 |
-
from infer.modules.vc.modules import VC
|
23 |
-
from configs.config import Config
|
24 |
-
import demucs.separate
|
25 |
-
import soundfile as sf
|
26 |
-
from zero import zero
|
27 |
-
from model import device
|
28 |
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
audio_files = [
|
35 |
-
os.path.join(target_dir, f)
|
36 |
-
for f in os.listdir(target_dir)
|
37 |
-
if f.endswith((".wav", ".mp3", ".ogg"))
|
38 |
-
]
|
39 |
-
if not audio_files:
|
40 |
-
raise gr.Error("No audio files found at the top level of the zip file")
|
41 |
-
|
42 |
-
return audio_files
|
43 |
-
|
44 |
-
|
45 |
-
def preprocess(zip_file: str) -> str:
|
46 |
-
temp_dir = tempfile.mkdtemp()
|
47 |
-
print(f"Using exp dir: {temp_dir}")
|
48 |
-
|
49 |
-
data_dir = os.path.join(temp_dir, "_data")
|
50 |
-
os.makedirs(data_dir)
|
51 |
-
audio_files = extract_audio_files(zip_file, data_dir)
|
52 |
-
|
53 |
-
pp = PreProcess(40000, temp_dir, 3.0, False)
|
54 |
-
pp.pipeline_mp_inp_dir(data_dir, 4)
|
55 |
-
|
56 |
-
pp.logfile.seek(0)
|
57 |
-
log = pp.logfile.read()
|
58 |
-
|
59 |
-
return temp_dir, f"Preprocessed {len(audio_files)} audio files.\n{log}"
|
60 |
-
|
61 |
-
|
62 |
-
@zero(duration=300)
|
63 |
-
def extract_features(exp_dir: str) -> str:
|
64 |
-
err = None
|
65 |
-
fi = FeatureInput(exp_dir)
|
66 |
-
try:
|
67 |
-
fi.run()
|
68 |
-
except Exception as e:
|
69 |
-
err = e
|
70 |
-
|
71 |
-
fi.logfile.seek(0)
|
72 |
-
log = fi.logfile.read()
|
73 |
-
|
74 |
-
if err:
|
75 |
-
log = f"Error: {err}\n{log}"
|
76 |
-
return log
|
77 |
-
|
78 |
-
hfe = HubertFeatureExtractor(exp_dir)
|
79 |
-
try:
|
80 |
-
hfe.run()
|
81 |
-
except Exception as e:
|
82 |
-
err = e
|
83 |
-
|
84 |
-
hfe.logfile.seek(0)
|
85 |
-
log += hfe.logfile.read()
|
86 |
-
|
87 |
-
if err:
|
88 |
-
log = f"Error: {err}\n{log}"
|
89 |
-
|
90 |
-
return log
|
91 |
-
|
92 |
-
|
93 |
-
def write_filelist(exp_dir: str) -> None:
|
94 |
-
if_f0_3 = True
|
95 |
-
spk_id5 = 0
|
96 |
-
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
97 |
-
feature_dir = "%s/3_feature768" % (exp_dir)
|
98 |
-
|
99 |
-
if if_f0_3:
|
100 |
-
f0_dir = "%s/2a_f0" % (exp_dir)
|
101 |
-
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
102 |
-
names = (
|
103 |
-
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
104 |
-
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
105 |
-
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
106 |
-
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
107 |
-
)
|
108 |
-
else:
|
109 |
-
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
110 |
-
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
111 |
-
)
|
112 |
-
opt = []
|
113 |
-
for name in names:
|
114 |
-
if if_f0_3:
|
115 |
-
opt.append(
|
116 |
-
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
117 |
-
% (
|
118 |
-
gt_wavs_dir.replace("\\", "\\\\"),
|
119 |
-
name,
|
120 |
-
feature_dir.replace("\\", "\\\\"),
|
121 |
-
name,
|
122 |
-
f0_dir.replace("\\", "\\\\"),
|
123 |
-
name,
|
124 |
-
f0nsf_dir.replace("\\", "\\\\"),
|
125 |
-
name,
|
126 |
-
spk_id5,
|
127 |
-
)
|
128 |
-
)
|
129 |
-
else:
|
130 |
-
opt.append(
|
131 |
-
"%s/%s.wav|%s/%s.npy|%s"
|
132 |
-
% (
|
133 |
-
gt_wavs_dir.replace("\\", "\\\\"),
|
134 |
-
name,
|
135 |
-
feature_dir.replace("\\", "\\\\"),
|
136 |
-
name,
|
137 |
-
spk_id5,
|
138 |
-
)
|
139 |
-
)
|
140 |
-
fea_dim = 768
|
141 |
-
|
142 |
-
now_dir = os.getcwd()
|
143 |
-
sr2 = "40k"
|
144 |
-
if if_f0_3:
|
145 |
-
for _ in range(2):
|
146 |
-
opt.append(
|
147 |
-
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
148 |
-
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
149 |
-
)
|
150 |
-
else:
|
151 |
-
for _ in range(2):
|
152 |
-
opt.append(
|
153 |
-
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
154 |
-
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
155 |
-
)
|
156 |
-
shuffle(opt)
|
157 |
-
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
158 |
-
f.write("\n".join(opt))
|
159 |
-
|
160 |
-
|
161 |
-
@zero(duration=300)
|
162 |
-
def train_model(exp_dir: str) -> str:
|
163 |
-
shutil.copy("config.json", exp_dir)
|
164 |
-
write_filelist(exp_dir)
|
165 |
-
train(exp_dir)
|
166 |
-
|
167 |
-
models = glob(f"{exp_dir}/G_*.pth")
|
168 |
-
print(models)
|
169 |
-
if not models:
|
170 |
-
raise gr.Error("No model found")
|
171 |
-
|
172 |
-
latest_model = max(models, key=os.path.getctime)
|
173 |
-
return latest_model
|
174 |
-
|
175 |
-
|
176 |
-
def download_weight(exp_dir: str) -> str:
|
177 |
-
models = glob(f"{exp_dir}/G_*.pth")
|
178 |
-
if not models:
|
179 |
-
raise gr.Error("No model found")
|
180 |
-
|
181 |
-
latest_model = max(models, key=os.path.getctime)
|
182 |
-
print(f"Latest model: {latest_model}")
|
183 |
-
|
184 |
-
name = os.path.basename(exp_dir)
|
185 |
-
out = os.path.join(exp_dir, f"{name}.pth")
|
186 |
-
extract_small_model(
|
187 |
-
latest_model, out, "40k", True, "Model trained by ZeroGPU.", "v2"
|
188 |
-
)
|
189 |
-
|
190 |
-
return out
|
191 |
-
|
192 |
-
|
193 |
-
def train_index(exp_dir: str) -> str:
|
194 |
-
feature_dir = "%s/3_feature768" % (exp_dir)
|
195 |
-
if not os.path.exists(feature_dir):
|
196 |
-
raise gr.Error("Please extract features first.")
|
197 |
-
listdir_res = list(os.listdir(feature_dir))
|
198 |
-
if len(listdir_res) == 0:
|
199 |
-
raise gr.Error("Please extract features first.")
|
200 |
-
npys = []
|
201 |
-
for name in sorted(listdir_res):
|
202 |
-
phone = np.load("%s/%s" % (feature_dir, name))
|
203 |
-
npys.append(phone)
|
204 |
-
big_npy = np.concatenate(npys, 0)
|
205 |
-
big_npy_idx = np.arange(big_npy.shape[0])
|
206 |
-
np.random.shuffle(big_npy_idx)
|
207 |
-
big_npy = big_npy[big_npy_idx]
|
208 |
-
if big_npy.shape[0] > 2e5:
|
209 |
-
print("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
210 |
-
try:
|
211 |
-
big_npy = (
|
212 |
-
MiniBatchKMeans(
|
213 |
-
n_clusters=10000,
|
214 |
-
verbose=True,
|
215 |
-
batch_size=256 * 8,
|
216 |
-
compute_labels=False,
|
217 |
-
init="random",
|
218 |
-
)
|
219 |
-
.fit(big_npy)
|
220 |
-
.cluster_centers_
|
221 |
-
)
|
222 |
-
except:
|
223 |
-
info = traceback.format_exc()
|
224 |
-
print(info)
|
225 |
-
raise gr.Error(info)
|
226 |
-
|
227 |
-
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
228 |
-
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
229 |
-
print("%s,%s" % (big_npy.shape, n_ivf))
|
230 |
-
index = faiss.index_factory(768, "IVF%s,Flat" % n_ivf)
|
231 |
-
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
232 |
-
print("training")
|
233 |
-
index_ivf = faiss.extract_index_ivf(index) #
|
234 |
-
index_ivf.nprobe = 1
|
235 |
-
index.train(big_npy)
|
236 |
-
faiss.write_index(
|
237 |
-
index,
|
238 |
-
"%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
|
239 |
-
)
|
240 |
-
print("adding")
|
241 |
-
batch_size_add = 8192
|
242 |
-
for i in range(0, big_npy.shape[0], batch_size_add):
|
243 |
-
index.add(big_npy[i : i + batch_size_add])
|
244 |
-
faiss.write_index(
|
245 |
-
index,
|
246 |
-
"%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
|
247 |
-
)
|
248 |
-
print("built added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe))
|
249 |
-
|
250 |
-
return "%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe)
|
251 |
-
|
252 |
-
|
253 |
-
def download_expdir(exp_dir: str) -> str:
|
254 |
-
shutil.make_archive(exp_dir, "zip", exp_dir)
|
255 |
-
return f"{exp_dir}.zip"
|
256 |
-
|
257 |
-
|
258 |
-
def restore_expdir(zip: str) -> str:
|
259 |
-
exp_dir = tempfile.mkdtemp()
|
260 |
-
shutil.unpack_archive(zip, exp_dir)
|
261 |
-
return exp_dir
|
262 |
-
|
263 |
-
|
264 |
-
@zero(duration=120)
|
265 |
-
def infer(exp_dir: str, original_audio: str, f0add: int) -> Tuple[int, np.ndarray]:
|
266 |
-
name = os.path.basename(exp_dir)
|
267 |
-
model = os.path.join(exp_dir, f"{name}.pth")
|
268 |
-
if not os.path.exists(model):
|
269 |
-
raise gr.Error("Model not found")
|
270 |
-
|
271 |
-
index = glob(f"{exp_dir}/added_*.index")
|
272 |
-
if not index:
|
273 |
-
raise gr.Error("Index not found")
|
274 |
-
|
275 |
-
base = os.path.basename(original_audio)
|
276 |
-
base = os.path.splitext(base)[0]
|
277 |
-
demucs.separate.main(
|
278 |
-
["--two-stems", "vocals", "-d", str(device), "-n", "htdemucs", original_audio]
|
279 |
-
)
|
280 |
-
out = os.path.join("separated", "htdemucs", base, "vocals.wav")
|
281 |
-
|
282 |
-
cfg = Config()
|
283 |
-
vc = VC(cfg)
|
284 |
-
vc.get_vc(model)
|
285 |
-
_, wav_opt = vc.vc_single(
|
286 |
-
0,
|
287 |
-
out,
|
288 |
-
f0add,
|
289 |
-
None,
|
290 |
-
"rmvpe",
|
291 |
-
index,
|
292 |
-
None,
|
293 |
-
0.5,
|
294 |
-
3,
|
295 |
-
0,
|
296 |
-
1,
|
297 |
-
0.33,
|
298 |
-
)
|
299 |
-
|
300 |
-
sr = wav_opt[0]
|
301 |
-
data = wav_opt[1]
|
302 |
-
|
303 |
-
return sr, data
|
304 |
-
|
305 |
-
|
306 |
-
def merge(exp_dir: str, original_audio: str, vocal: Tuple[int, np.ndarray]) -> str:
|
307 |
-
base = os.path.basename(original_audio)
|
308 |
-
base = os.path.splitext(base)[0]
|
309 |
-
music = os.path.join("separated", "htdemucs", base, "no-vocals.wav")
|
310 |
-
|
311 |
-
tmp = os.path.join(exp_dir, "tmp.wav")
|
312 |
-
sf.write(tmp, vocal[1], vocal[0])
|
313 |
-
|
314 |
-
os.system(
|
315 |
-
f"ffmpeg -i {music} -i {tmp} -filter_complex '[1]volume=2[a];[0][a]amix=inputs=2:duration=first:dropout_transition=2' {tmp}.merged.mp3"
|
316 |
)
|
317 |
|
318 |
-
return f"{tmp}.merged.mp3"
|
319 |
-
|
320 |
-
|
321 |
-
with gr.Blocks() as app:
|
322 |
-
# allow user to manually select the experiment directory
|
323 |
exp_dir = gr.Textbox(
|
324 |
-
label="Experiment directory
|
325 |
visible=True,
|
326 |
-
interactive=
|
327 |
)
|
328 |
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
label="Upload a zip file containing audio files for training",
|
335 |
-
file_types=["zip"],
|
336 |
-
)
|
337 |
-
preprocess_output = gr.Textbox(
|
338 |
-
label="Preprocessing output", lines=5
|
339 |
-
)
|
340 |
-
|
341 |
-
preprocess_btn = gr.Button(
|
342 |
-
value="Start New Experiment", variant="primary"
|
343 |
-
)
|
344 |
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
file_types=["zip"],
|
349 |
-
)
|
350 |
-
restore_btn = gr.Button(value="Restore Experiment", variant="primary")
|
351 |
|
352 |
-
with gr.Tab(label="
|
353 |
-
|
354 |
-
extract_features_btn = gr.Button(
|
355 |
-
value="Extract features", variant="primary"
|
356 |
-
)
|
357 |
-
with gr.Row():
|
358 |
-
extract_features_output = gr.Textbox(
|
359 |
-
label="Feature extraction output", lines=10
|
360 |
-
)
|
361 |
|
362 |
-
with gr.Tab(label="
|
363 |
-
|
364 |
-
train_btn = gr.Button(value="Train", variant="primary")
|
365 |
-
latest_model = gr.File(label="Latest checkpoint")
|
366 |
-
with gr.Row():
|
367 |
-
train_index_btn = gr.Button(value="Train index", variant="primary")
|
368 |
-
trained_index = gr.File(label="Trained index")
|
369 |
|
370 |
with gr.Tab(label="Download"):
|
371 |
-
|
372 |
-
download_weight_btn = gr.Button(
|
373 |
-
value="Download latest model", variant="primary"
|
374 |
-
)
|
375 |
-
download_weight_output = gr.File(label="Download latest model")
|
376 |
-
|
377 |
-
with gr.Row():
|
378 |
-
download_expdir_btn = gr.Button(
|
379 |
-
value="Download experiment directory", variant="primary"
|
380 |
-
)
|
381 |
-
download_expdir_output = gr.File(label="Download experiment directory")
|
382 |
|
383 |
with gr.Tab(label="Inference"):
|
384 |
-
|
385 |
-
original_audio = gr.Audio(
|
386 |
-
label="Upload original audio",
|
387 |
-
type="filepath",
|
388 |
-
show_download_button=True,
|
389 |
-
)
|
390 |
-
f0add = gr.Slider(
|
391 |
-
label="F0 add",
|
392 |
-
minimum=-16,
|
393 |
-
maximum=16,
|
394 |
-
step=1,
|
395 |
-
value=0,
|
396 |
-
)
|
397 |
-
infer_btn = gr.Button(value="Infer", variant="primary")
|
398 |
-
with gr.Row():
|
399 |
-
infer_output = gr.Audio(label="Inferred audio")
|
400 |
-
with gr.Row():
|
401 |
-
merge_output = gr.Audio(label="Merged audio")
|
402 |
-
|
403 |
-
preprocess_btn.click(
|
404 |
-
fn=preprocess,
|
405 |
-
inputs=[zip_file],
|
406 |
-
outputs=[exp_dir, preprocess_output],
|
407 |
-
)
|
408 |
-
|
409 |
-
extract_features_btn.click(
|
410 |
-
fn=extract_features,
|
411 |
-
inputs=[exp_dir],
|
412 |
-
outputs=[extract_features_output],
|
413 |
-
)
|
414 |
-
|
415 |
-
train_btn.click(
|
416 |
-
fn=train_model,
|
417 |
-
inputs=[exp_dir],
|
418 |
-
outputs=[latest_model],
|
419 |
-
).success(
|
420 |
-
fn=train_model,
|
421 |
-
inputs=[exp_dir],
|
422 |
-
outputs=[latest_model],
|
423 |
-
)
|
424 |
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
)
|
430 |
-
|
431 |
-
download_weight_btn.click(
|
432 |
-
fn=download_weight,
|
433 |
-
inputs=[exp_dir],
|
434 |
-
outputs=[download_weight_output],
|
435 |
-
)
|
436 |
-
|
437 |
-
download_expdir_btn.click(
|
438 |
-
fn=download_expdir,
|
439 |
-
inputs=[exp_dir],
|
440 |
-
outputs=[download_expdir_output],
|
441 |
-
)
|
442 |
-
|
443 |
-
restore_btn.click(
|
444 |
-
fn=restore_expdir,
|
445 |
-
inputs=[restore_zip_file],
|
446 |
-
outputs=[exp_dir],
|
447 |
-
)
|
448 |
-
|
449 |
-
infer_btn.click(
|
450 |
-
fn=infer,
|
451 |
-
inputs=[exp_dir, original_audio, f0add],
|
452 |
-
outputs=[infer_output],
|
453 |
-
).success(
|
454 |
-
fn=merge,
|
455 |
-
inputs=[exp_dir, original_audio, infer_output],
|
456 |
-
outputs=[merge_output],
|
457 |
-
)
|
458 |
|
459 |
app.launch()
|
|
|
|
|
1 |
from prelude import prelude
|
2 |
|
3 |
prelude()
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
import gradio as gr
|
6 |
+
from app.setup import SetupTab
|
7 |
+
from app.extract import FeatureExtractionTab
|
8 |
+
from app.train import TrainTab
|
9 |
+
from app.export import ExportTab
|
10 |
+
from app.infer import InferenceTab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
+
with gr.Blocks() as app:
|
14 |
+
gr.Markdown("# ZeroRVC")
|
15 |
+
gr.Markdown(
|
16 |
+
"Run Retrieval-based Voice Conversion training and inference on HuggingFace ZeroGPU."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
exp_dir = gr.Textbox(
|
20 |
+
label="Experiment directory",
|
21 |
visible=True,
|
22 |
+
interactive=False,
|
23 |
)
|
24 |
|
25 |
+
setup = SetupTab()
|
26 |
+
feature_extraction = FeatureExtractionTab()
|
27 |
+
training = TrainTab()
|
28 |
+
export = ExportTab()
|
29 |
+
inferencing = InferenceTab()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
with gr.Tabs():
|
32 |
+
with gr.Tab(label="Setup"):
|
33 |
+
setup.ui()
|
|
|
|
|
|
|
34 |
|
35 |
+
with gr.Tab(label="Feature Extraction"):
|
36 |
+
feature_extraction.ui()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
with gr.Tab(label="Training"):
|
39 |
+
training.ui()
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
with gr.Tab(label="Download"):
|
42 |
+
export.ui()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
with gr.Tab(label="Inference"):
|
45 |
+
inferencing.ui()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
setup.build(exp_dir)
|
48 |
+
feature_extraction.build(exp_dir)
|
49 |
+
training.build(exp_dir)
|
50 |
+
export.build(exp_dir)
|
51 |
+
inferencing.build(exp_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
app.launch()
|
app/__init__.py
ADDED
File without changes
|
app/export.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from glob import glob
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import gradio as gr
|
5 |
+
from infer.lib.train.process_ckpt import extract_small_model
|
6 |
+
|
7 |
+
|
8 |
+
def download_weight(exp_dir: str) -> str:
|
9 |
+
models = glob(f"{exp_dir}/G_*.pth")
|
10 |
+
if not models:
|
11 |
+
raise gr.Error("No model found")
|
12 |
+
|
13 |
+
latest_model = max(models, key=os.path.getctime)
|
14 |
+
print(f"Latest model: {latest_model}")
|
15 |
+
|
16 |
+
name = os.path.basename(exp_dir)
|
17 |
+
out = os.path.join(exp_dir, f"{name}.pth")
|
18 |
+
extract_small_model(
|
19 |
+
latest_model, out, "40k", True, "Model trained by ZeroGPU.", "v2"
|
20 |
+
)
|
21 |
+
|
22 |
+
return out
|
23 |
+
|
24 |
+
|
25 |
+
def download_expdir(exp_dir: str) -> str:
|
26 |
+
shutil.make_archive(exp_dir, "zip", exp_dir)
|
27 |
+
return f"{exp_dir}.zip"
|
28 |
+
|
29 |
+
|
30 |
+
def remove_expdir(exp_dir: str) -> str:
|
31 |
+
shutil.rmtree(exp_dir)
|
32 |
+
return ""
|
33 |
+
|
34 |
+
|
35 |
+
class ExportTab:
|
36 |
+
def __init__(self):
|
37 |
+
pass
|
38 |
+
|
39 |
+
def ui(self):
|
40 |
+
gr.Markdown("# Download Model or Experiment Directory")
|
41 |
+
gr.Markdown(
|
42 |
+
"You can download the latest model or the entire experiment directory here."
|
43 |
+
)
|
44 |
+
|
45 |
+
with gr.Row():
|
46 |
+
self.download_weight_btn = gr.Button(
|
47 |
+
value="Latest model (for inferencing)", variant="primary"
|
48 |
+
)
|
49 |
+
self.download_weight_output = gr.File(label="Prune latest model")
|
50 |
+
|
51 |
+
with gr.Row():
|
52 |
+
self.download_expdir_btn = gr.Button(
|
53 |
+
value="Download experiment directory", variant="primary"
|
54 |
+
)
|
55 |
+
self.download_expdir_output = gr.File(label="Archive experiment directory")
|
56 |
+
|
57 |
+
with gr.Row():
|
58 |
+
self.remove_expdir_btn = gr.Button(
|
59 |
+
value="REMOVE experiment directory", variant="stop"
|
60 |
+
)
|
61 |
+
|
62 |
+
def build(self, exp_dir: gr.Textbox):
|
63 |
+
self.download_weight_btn.click(
|
64 |
+
fn=download_weight,
|
65 |
+
inputs=[exp_dir],
|
66 |
+
outputs=[self.download_weight_output],
|
67 |
+
)
|
68 |
+
|
69 |
+
self.download_expdir_btn.click(
|
70 |
+
fn=download_expdir,
|
71 |
+
inputs=[exp_dir],
|
72 |
+
outputs=[self.download_expdir_output],
|
73 |
+
)
|
74 |
+
|
75 |
+
self.remove_expdir_btn.click(
|
76 |
+
fn=remove_expdir,
|
77 |
+
inputs=[exp_dir],
|
78 |
+
outputs=[exp_dir],
|
79 |
+
)
|
app/extract.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from infer.modules.train.extract.extract_f0_rmvpe import FeatureInput
|
3 |
+
from infer.modules.train.extract_feature_print import HubertFeatureExtractor
|
4 |
+
from zero import zero
|
5 |
+
|
6 |
+
|
7 |
+
@zero(duration=300)
|
8 |
+
def extract_features(exp_dir: str) -> str:
|
9 |
+
err = None
|
10 |
+
fi = FeatureInput(exp_dir)
|
11 |
+
try:
|
12 |
+
fi.run()
|
13 |
+
except Exception as e:
|
14 |
+
err = e
|
15 |
+
|
16 |
+
fi.logfile.seek(0)
|
17 |
+
log = fi.logfile.read()
|
18 |
+
|
19 |
+
if err:
|
20 |
+
log = f"Error: {err}\n{log}"
|
21 |
+
return log
|
22 |
+
|
23 |
+
hfe = HubertFeatureExtractor(exp_dir)
|
24 |
+
try:
|
25 |
+
hfe.run()
|
26 |
+
except Exception as e:
|
27 |
+
err = e
|
28 |
+
|
29 |
+
hfe.logfile.seek(0)
|
30 |
+
log += hfe.logfile.read()
|
31 |
+
|
32 |
+
if err:
|
33 |
+
log = f"Error: {err}\n{log}"
|
34 |
+
|
35 |
+
return log
|
36 |
+
|
37 |
+
|
38 |
+
class FeatureExtractionTab:
|
39 |
+
def __init__(self):
|
40 |
+
pass
|
41 |
+
|
42 |
+
def ui(self):
|
43 |
+
gr.Markdown("# Feature Extraction")
|
44 |
+
gr.Markdown(
|
45 |
+
"Before training, you need to extract features from the audio files. "
|
46 |
+
"This process may take a while, depending on the number of audio files. "
|
47 |
+
"Under the hood, this process extracts speech features using HuBERT and extracts F0 by RMVPE."
|
48 |
+
)
|
49 |
+
|
50 |
+
with gr.Row():
|
51 |
+
self.extract_features_btn = gr.Button(
|
52 |
+
value="Extract features", variant="primary"
|
53 |
+
)
|
54 |
+
with gr.Row():
|
55 |
+
self.extract_features_log = gr.Textbox(
|
56 |
+
label="Feature extraction log", lines=10
|
57 |
+
)
|
58 |
+
|
59 |
+
def build(self, exp_dir: gr.Textbox):
|
60 |
+
self.extract_features_btn.click(
|
61 |
+
fn=extract_features,
|
62 |
+
inputs=[exp_dir],
|
63 |
+
outputs=[self.extract_features_log],
|
64 |
+
)
|
app/infer.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from glob import glob
|
2 |
+
import os
|
3 |
+
from typing import Tuple
|
4 |
+
import demucs
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf
|
8 |
+
from configs.config import Config
|
9 |
+
from infer.modules.vc.modules import VC
|
10 |
+
from zero import zero
|
11 |
+
from model import device
|
12 |
+
|
13 |
+
|
14 |
+
@zero(duration=120)
|
15 |
+
def infer(exp_dir: str, original_audio: str, f0add: int) -> Tuple[int, np.ndarray]:
|
16 |
+
name = os.path.basename(exp_dir)
|
17 |
+
model = os.path.join(exp_dir, f"{name}.pth")
|
18 |
+
if not os.path.exists(model):
|
19 |
+
raise gr.Error("Model not found")
|
20 |
+
|
21 |
+
index = glob(f"{exp_dir}/added_*.index")
|
22 |
+
if not index:
|
23 |
+
raise gr.Error("Index not found")
|
24 |
+
|
25 |
+
base = os.path.basename(original_audio)
|
26 |
+
base = os.path.splitext(base)[0]
|
27 |
+
demucs.separate.main(
|
28 |
+
["--two-stems", "vocals", "-d", str(device), "-n", "htdemucs", original_audio]
|
29 |
+
)
|
30 |
+
out = os.path.join("separated", "htdemucs", base, "vocals.wav")
|
31 |
+
|
32 |
+
cfg = Config()
|
33 |
+
vc = VC(cfg)
|
34 |
+
vc.get_vc(model)
|
35 |
+
_, wav_opt = vc.vc_single(
|
36 |
+
0,
|
37 |
+
out,
|
38 |
+
f0add,
|
39 |
+
None,
|
40 |
+
"rmvpe",
|
41 |
+
index,
|
42 |
+
None,
|
43 |
+
0.5,
|
44 |
+
3,
|
45 |
+
0,
|
46 |
+
1,
|
47 |
+
0.33,
|
48 |
+
)
|
49 |
+
|
50 |
+
sr = wav_opt[0]
|
51 |
+
data = wav_opt[1]
|
52 |
+
|
53 |
+
return sr, data
|
54 |
+
|
55 |
+
|
56 |
+
def merge(exp_dir: str, original_audio: str, vocal: Tuple[int, np.ndarray]) -> str:
|
57 |
+
base = os.path.basename(original_audio)
|
58 |
+
base = os.path.splitext(base)[0]
|
59 |
+
music = os.path.join("separated", "htdemucs", base, "no-vocals.wav")
|
60 |
+
|
61 |
+
tmp = os.path.join(exp_dir, "tmp.wav")
|
62 |
+
sf.write(tmp, vocal[1], vocal[0])
|
63 |
+
|
64 |
+
os.system(
|
65 |
+
f"ffmpeg -i {music} -i {tmp} -filter_complex '[1]volume=2[a];[0][a]amix=inputs=2:duration=first:dropout_transition=2' {tmp}.merged.mp3"
|
66 |
+
)
|
67 |
+
|
68 |
+
return f"{tmp}.merged.mp3"
|
69 |
+
|
70 |
+
|
71 |
+
class InferenceTab:
|
72 |
+
def __init__(self):
|
73 |
+
pass
|
74 |
+
|
75 |
+
def ui(self):
|
76 |
+
gr.Markdown("# Inference")
|
77 |
+
gr.Markdown(
|
78 |
+
"After trained model is pruned, you can use it to infer on new music. \n"
|
79 |
+
"Upload the original audio and adjust the F0 add value to generate the inferred audio."
|
80 |
+
)
|
81 |
+
|
82 |
+
with gr.Row():
|
83 |
+
self.original_audio = gr.Audio(
|
84 |
+
label="Upload original audio",
|
85 |
+
type="filepath",
|
86 |
+
show_download_button=True,
|
87 |
+
)
|
88 |
+
self.f0add = gr.Slider(
|
89 |
+
label="F0 add",
|
90 |
+
minimum=-16,
|
91 |
+
maximum=16,
|
92 |
+
step=1,
|
93 |
+
value=0,
|
94 |
+
)
|
95 |
+
self.infer_btn = gr.Button(value="Infer", variant="primary")
|
96 |
+
with gr.Row():
|
97 |
+
self.infer_output = gr.Audio(label="Inferred audio")
|
98 |
+
with gr.Row():
|
99 |
+
self.merge_output = gr.Audio(label="Merged audio")
|
100 |
+
|
101 |
+
def build(self, exp_dir: gr.Textbox):
|
102 |
+
self.infer_btn.click(
|
103 |
+
fn=infer,
|
104 |
+
inputs=[exp_dir, self.original_audio, self.f0add],
|
105 |
+
outputs=[self.infer_output],
|
106 |
+
).success(
|
107 |
+
fn=merge,
|
108 |
+
inputs=[exp_dir, self.original_audio, self.infer_output],
|
109 |
+
outputs=[self.merge_output],
|
110 |
+
)
|
app/setup.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import gradio as gr
|
4 |
+
import zipfile
|
5 |
+
import tempfile
|
6 |
+
from infer.modules.train.preprocess import PreProcess
|
7 |
+
from typing import Tuple
|
8 |
+
|
9 |
+
|
10 |
+
def extract_audio_files(zip_file: str, target_dir: str) -> list[str]:
|
11 |
+
with zipfile.ZipFile(zip_file, "r") as zip_ref:
|
12 |
+
zip_ref.extractall(target_dir)
|
13 |
+
|
14 |
+
audio_files = [
|
15 |
+
os.path.join(target_dir, f)
|
16 |
+
for f in os.listdir(target_dir)
|
17 |
+
if f.endswith((".wav", ".mp3", ".ogg"))
|
18 |
+
]
|
19 |
+
if not audio_files:
|
20 |
+
raise gr.Error("No audio files found at the top level of the zip file")
|
21 |
+
|
22 |
+
return audio_files
|
23 |
+
|
24 |
+
|
25 |
+
def create_new_expdir(zip_file: str) -> Tuple[str, str]:
|
26 |
+
temp_dir = tempfile.mkdtemp()
|
27 |
+
print(f"Using exp dir: {temp_dir}")
|
28 |
+
|
29 |
+
data_dir = os.path.join(temp_dir, "_data")
|
30 |
+
os.makedirs(data_dir)
|
31 |
+
audio_files = extract_audio_files(zip_file, data_dir)
|
32 |
+
|
33 |
+
pp = PreProcess(40000, temp_dir, 3.0, False)
|
34 |
+
pp.pipeline_mp_inp_dir(data_dir, 4)
|
35 |
+
|
36 |
+
pp.logfile.seek(0)
|
37 |
+
log = pp.logfile.read()
|
38 |
+
|
39 |
+
return temp_dir, f"Preprocessed {len(audio_files)} audio files.\n{log}"
|
40 |
+
|
41 |
+
|
42 |
+
def restore_expdir(zip: str) -> str:
|
43 |
+
exp_dir = tempfile.mkdtemp()
|
44 |
+
shutil.unpack_archive(zip, exp_dir)
|
45 |
+
return exp_dir
|
46 |
+
|
47 |
+
|
48 |
+
def set_dir(dir_val: str) -> str:
|
49 |
+
if not dir_val.startswith("/tmp/"):
|
50 |
+
dir_val = os.path.join("/tmp", dir_val)
|
51 |
+
if not os.path.isdir(dir_val):
|
52 |
+
raise gr.Error("Directory does not exist")
|
53 |
+
|
54 |
+
return dir_val
|
55 |
+
|
56 |
+
|
57 |
+
class SetupTab:
|
58 |
+
def __init__(self):
|
59 |
+
pass
|
60 |
+
|
61 |
+
def ui(self):
|
62 |
+
gr.Markdown("# Setup Experiment")
|
63 |
+
gr.Markdown(
|
64 |
+
"You can upload a zip file containing audio files to start a new experiment, or upload an experiment directory zip file to restore an existing experiment."
|
65 |
+
)
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
with gr.Column():
|
69 |
+
self.zip_file = gr.File(
|
70 |
+
label="Upload a zip file containing audio files for training",
|
71 |
+
file_types=["zip"],
|
72 |
+
)
|
73 |
+
self.preprocess_log = gr.Textbox(label="Log", lines=5)
|
74 |
+
|
75 |
+
self.preprocess_btn = gr.Button(
|
76 |
+
value="Start New Experiment", variant="primary"
|
77 |
+
)
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
self.restore_zip_file = gr.File(
|
81 |
+
label="Upload the experiment directory zip file",
|
82 |
+
file_types=["zip"],
|
83 |
+
)
|
84 |
+
self.restore_btn = gr.Button(value="Restore Experiment", variant="primary")
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
self.dir_val = gr.Textbox(
|
88 |
+
label="Manually set the experiment directory (don't touch it unless you know what you are doing)",
|
89 |
+
placeholder="/tmp/...",
|
90 |
+
)
|
91 |
+
self.set_dir_btn = gr.Button(value="Set Directory")
|
92 |
+
|
93 |
+
def build(self, exp_dir: gr.Textbox):
|
94 |
+
self.preprocess_btn.click(
|
95 |
+
fn=create_new_expdir,
|
96 |
+
inputs=[self.zip_file],
|
97 |
+
outputs=[exp_dir, self.preprocess_log],
|
98 |
+
)
|
99 |
+
|
100 |
+
self.restore_btn.click(
|
101 |
+
fn=restore_expdir,
|
102 |
+
inputs=[self.restore_zip_file],
|
103 |
+
outputs=[exp_dir],
|
104 |
+
)
|
105 |
+
|
106 |
+
self.set_dir_btn.click(
|
107 |
+
fn=set_dir,
|
108 |
+
inputs=[self.dir_val],
|
109 |
+
outputs=[exp_dir],
|
110 |
+
)
|
app/train.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import traceback
|
4 |
+
import faiss
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
from sklearn.cluster import MiniBatchKMeans
|
8 |
+
from random import shuffle
|
9 |
+
from glob import glob
|
10 |
+
from infer.modules.train.train import train
|
11 |
+
from zero import zero
|
12 |
+
|
13 |
+
|
14 |
+
def write_filelist(exp_dir: str) -> None:
|
15 |
+
if_f0_3 = True
|
16 |
+
spk_id5 = 0
|
17 |
+
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
18 |
+
feature_dir = "%s/3_feature768" % (exp_dir)
|
19 |
+
|
20 |
+
if if_f0_3:
|
21 |
+
f0_dir = "%s/2a_f0" % (exp_dir)
|
22 |
+
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
23 |
+
names = (
|
24 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
25 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
26 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
27 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
28 |
+
)
|
29 |
+
else:
|
30 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
31 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
32 |
+
)
|
33 |
+
opt = []
|
34 |
+
for name in names:
|
35 |
+
if if_f0_3:
|
36 |
+
opt.append(
|
37 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
38 |
+
% (
|
39 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
40 |
+
name,
|
41 |
+
feature_dir.replace("\\", "\\\\"),
|
42 |
+
name,
|
43 |
+
f0_dir.replace("\\", "\\\\"),
|
44 |
+
name,
|
45 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
46 |
+
name,
|
47 |
+
spk_id5,
|
48 |
+
)
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
opt.append(
|
52 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
53 |
+
% (
|
54 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
55 |
+
name,
|
56 |
+
feature_dir.replace("\\", "\\\\"),
|
57 |
+
name,
|
58 |
+
spk_id5,
|
59 |
+
)
|
60 |
+
)
|
61 |
+
fea_dim = 768
|
62 |
+
|
63 |
+
now_dir = os.getcwd()
|
64 |
+
sr2 = "40k"
|
65 |
+
if if_f0_3:
|
66 |
+
for _ in range(2):
|
67 |
+
opt.append(
|
68 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
69 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
70 |
+
)
|
71 |
+
else:
|
72 |
+
for _ in range(2):
|
73 |
+
opt.append(
|
74 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
75 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
76 |
+
)
|
77 |
+
shuffle(opt)
|
78 |
+
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
79 |
+
f.write("\n".join(opt))
|
80 |
+
|
81 |
+
|
82 |
+
@zero(duration=300)
|
83 |
+
def train_model(exp_dir: str) -> str:
|
84 |
+
shutil.copy("config.json", exp_dir)
|
85 |
+
write_filelist(exp_dir)
|
86 |
+
train(exp_dir)
|
87 |
+
|
88 |
+
models = glob(f"{exp_dir}/G_*.pth")
|
89 |
+
print(models)
|
90 |
+
if not models:
|
91 |
+
raise gr.Error("No model found")
|
92 |
+
|
93 |
+
latest_model = max(models, key=os.path.getctime)
|
94 |
+
return latest_model
|
95 |
+
|
96 |
+
|
97 |
+
def train_index(exp_dir: str) -> str:
|
98 |
+
feature_dir = "%s/3_feature768" % (exp_dir)
|
99 |
+
if not os.path.exists(feature_dir):
|
100 |
+
raise gr.Error("Please extract features first.")
|
101 |
+
listdir_res = list(os.listdir(feature_dir))
|
102 |
+
if len(listdir_res) == 0:
|
103 |
+
raise gr.Error("Please extract features first.")
|
104 |
+
npys = []
|
105 |
+
for name in sorted(listdir_res):
|
106 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
107 |
+
npys.append(phone)
|
108 |
+
big_npy = np.concatenate(npys, 0)
|
109 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
110 |
+
np.random.shuffle(big_npy_idx)
|
111 |
+
big_npy = big_npy[big_npy_idx]
|
112 |
+
if big_npy.shape[0] > 2e5:
|
113 |
+
print("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
114 |
+
try:
|
115 |
+
big_npy = (
|
116 |
+
MiniBatchKMeans(
|
117 |
+
n_clusters=10000,
|
118 |
+
verbose=True,
|
119 |
+
batch_size=256 * 8,
|
120 |
+
compute_labels=False,
|
121 |
+
init="random",
|
122 |
+
)
|
123 |
+
.fit(big_npy)
|
124 |
+
.cluster_centers_
|
125 |
+
)
|
126 |
+
except:
|
127 |
+
info = traceback.format_exc()
|
128 |
+
print(info)
|
129 |
+
raise gr.Error(info)
|
130 |
+
|
131 |
+
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
132 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
133 |
+
print("%s,%s" % (big_npy.shape, n_ivf))
|
134 |
+
index = faiss.index_factory(768, "IVF%s,Flat" % n_ivf)
|
135 |
+
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
136 |
+
print("training")
|
137 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
138 |
+
index_ivf.nprobe = 1
|
139 |
+
index.train(big_npy)
|
140 |
+
faiss.write_index(
|
141 |
+
index,
|
142 |
+
"%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
|
143 |
+
)
|
144 |
+
print("adding")
|
145 |
+
batch_size_add = 8192
|
146 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
147 |
+
index.add(big_npy[i : i + batch_size_add])
|
148 |
+
faiss.write_index(
|
149 |
+
index,
|
150 |
+
"%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
|
151 |
+
)
|
152 |
+
print("built added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe))
|
153 |
+
|
154 |
+
return "%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe)
|
155 |
+
|
156 |
+
|
157 |
+
class TrainTab:
|
158 |
+
def __init__(self):
|
159 |
+
pass
|
160 |
+
|
161 |
+
def ui(self):
|
162 |
+
gr.Markdown("# Training")
|
163 |
+
gr.Markdown(
|
164 |
+
"You can start training the model by clicking the button below. "
|
165 |
+
"Each time you click the button, the model will train for 20 epochs, which takes about 10 minutes on ZeroGPU (A100). "
|
166 |
+
"Tha latest *training checkpoint* will be avaible below."
|
167 |
+
)
|
168 |
+
|
169 |
+
with gr.Row():
|
170 |
+
self.train_btn = gr.Button(value="Train", variant="primary")
|
171 |
+
self.latest_checkpoint = gr.File(label="Latest checkpoint")
|
172 |
+
with gr.Row():
|
173 |
+
self.train_index_btn = gr.Button(value="Train index", variant="primary")
|
174 |
+
self.trained_index = gr.File(label="Trained index")
|
175 |
+
|
176 |
+
def build(self, exp_dir: gr.Textbox):
|
177 |
+
self.train_btn.click(
|
178 |
+
fn=train_model,
|
179 |
+
inputs=[exp_dir],
|
180 |
+
outputs=[self.latest_checkpoint],
|
181 |
+
).success(
|
182 |
+
fn=train_model,
|
183 |
+
inputs=[exp_dir],
|
184 |
+
outputs=[self.latest_checkpoint],
|
185 |
+
)
|
186 |
+
|
187 |
+
self.train_index_btn.click(
|
188 |
+
fn=train_index,
|
189 |
+
inputs=[exp_dir],
|
190 |
+
outputs=[self.trained_index],
|
191 |
+
)
|
configs/config.py
CHANGED
@@ -132,7 +132,7 @@ class Config:
|
|
132 |
if self.has_xpu():
|
133 |
self.device = self.instead = "xpu:0"
|
134 |
self.is_half = True
|
135 |
-
i_device = int(
|
136 |
self.gpu_name = torch.cuda.get_device_name(i_device)
|
137 |
if (
|
138 |
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
|
|
132 |
if self.has_xpu():
|
133 |
self.device = self.instead = "xpu:0"
|
134 |
self.is_half = True
|
135 |
+
i_device = int(0)
|
136 |
self.gpu_name = torch.cuda.get_device_name(i_device)
|
137 |
if (
|
138 |
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
infer/modules/vc/modules.py
CHANGED
@@ -129,16 +129,16 @@ class VC:
|
|
129 |
|
130 |
self.pipeline = Pipeline(self.tgt_sr, self.config)
|
131 |
n_spk = self.cpt["config"][-3]
|
132 |
-
index = {"value": get_index_path_from_model(sid), "__type__": "update"}
|
133 |
-
logger.info("Select index: " + index["value"])
|
134 |
|
135 |
return (
|
136 |
(
|
137 |
{"visible": True, "maximum": n_spk, "__type__": "update"},
|
138 |
to_return_protect0,
|
139 |
to_return_protect1,
|
140 |
-
index,
|
141 |
-
index,
|
142 |
)
|
143 |
if to_return_protect
|
144 |
else {"visible": True, "maximum": n_spk, "__type__": "update"}
|
|
|
129 |
|
130 |
self.pipeline = Pipeline(self.tgt_sr, self.config)
|
131 |
n_spk = self.cpt["config"][-3]
|
132 |
+
# index = {"value": get_index_path_from_model(sid), "__type__": "update"}
|
133 |
+
# logger.info("Select index: " + index["value"])
|
134 |
|
135 |
return (
|
136 |
(
|
137 |
{"visible": True, "maximum": n_spk, "__type__": "update"},
|
138 |
to_return_protect0,
|
139 |
to_return_protect1,
|
140 |
+
# index,
|
141 |
+
# index,
|
142 |
)
|
143 |
if to_return_protect
|
144 |
else {"visible": True, "maximum": n_spk, "__type__": "update"}
|