import yt_dlp import numpy as np import librosa import soundfile as sf import os import zipfile # Function to download audio from YouTube and save it as a WAV file def download_youtube_audio(url, audio_name): ydl_opts = { 'format': 'bestaudio/best', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'wav', }], "outtmpl": f'youtubeaudio/{audio_name}', # Output template } with yt_dlp.YoutubeDL(ydl_opts) as ydl: ydl.download([url]) return f'youtubeaudio/{audio_name}.wav' # Function to calculate RMS def get_rms(y, frame_length=2048, hop_length=512, pad_mode="constant"): padding = (int(frame_length // 2), int(frame_length // 2)) y = np.pad(y, padding, mode=pad_mode) axis = -1 out_strides = y.strides + tuple([y.strides[axis]]) x_shape_trimmed = list(y.shape) x_shape_trimmed[axis] -= frame_length - 1 out_shape = tuple(x_shape_trimmed) + tuple([frame_length]) xw = np.lib.stride_tricks.as_strided( y, shape=out_shape, strides=out_strides ) if axis < 0: target_axis = axis - 1 else: target_axis = axis + 1 xw = np.moveaxis(xw, -1, target_axis) slices = [slice(None)] * xw.ndim slices[axis] = slice(0, None, hop_length) x = xw[tuple(slices)] power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True) return np.sqrt(power) # Slicer class class Slicer: def __init__(self, sr, threshold=-40., min_length=5000, min_interval=300, hop_size=20, max_sil_kept=5000): if not min_length >= min_interval >= hop_size: raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size') if not max_sil_kept >= hop_size: raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size') min_interval = sr * min_interval / 1000 self.threshold = 10 ** (threshold / 20.) self.hop_size = round(sr * hop_size / 1000) self.win_size = min(round(min_interval), 4 * self.hop_size) self.min_length = round(sr * min_length / 1000 / self.hop_size) self.min_interval = round(min_interval / self.hop_size) self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size) def _apply_slice(self, waveform, begin, end): if len(waveform.shape) > 1: return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)] else: return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)] def slice(self, waveform): if len(waveform.shape) > 1: samples = waveform.mean(axis=0) else: samples = waveform if samples.shape[0] <= self.min_length: return [waveform] rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0) sil_tags = [] silence_start = None clip_start = 0 for i, rms in enumerate(rms_list): if rms < self.threshold: if silence_start is None: silence_start = i continue if silence_start is None: continue is_leading_silence = silence_start == 0 and i > self.max_sil_kept need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length if not is_leading_silence and not need_slice_middle: silence_start = None continue if i - silence_start <= self.max_sil_kept: pos = rms_list[silence_start: i + 1].argmin() + silence_start if silence_start == 0: sil_tags.append((0, pos)) else: sil_tags.append((pos, pos)) clip_start = pos elif i - silence_start <= self.max_sil_kept * 2: pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin() pos += i - self.max_sil_kept pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept if silence_start == 0: sil_tags.append((0, pos_r)) clip_start = pos_r else: sil_tags.append((min(pos_l, pos), max(pos_r, pos))) clip_start = max(pos_r, pos) else: pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept if silence_start == 0: sil_tags.append((0, pos_r)) else: sil_tags.append((pos_l, pos_r)) clip_start = pos_r silence_start = None total_frames = rms_list.shape[0] if silence_start is not None and total_frames - silence_start >= self.min_interval: silence_end = min(total_frames, silence_start + self.max_sil_kept) pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start sil_tags.append((pos, total_frames + 1)) if len(sil_tags) == 0: return [waveform] else: chunks = [] if sil_tags[0][0] > 0: chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0])) for i in range(len(sil_tags) - 1): chunks.append(self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0])) if sil_tags[-1][1] < total_frames: chunks.append(self._apply_slice(waveform, sil_tags[-1][1], total_frames)) return chunks # Function to slice and save audio chunks def slice_audio(file_path, audio_name): audio, sr = librosa.load(file_path, sr=None, mono=False) os.makedirs(f'dataset/{audio_name}', exist_ok=True) slicer = Slicer(sr=sr, threshold=-40, min_length=5000, min_interval=500, hop_size=10, max_sil_kept=500) chunks = slicer.slice(audio) for i, chunk in enumerate(chunks): if len(chunk.shape) > 1: chunk = chunk.T sf.write(f'dataset/{audio_name}/split_{i}.wav', chunk, sr) return f"dataset/{audio_name}" # Function to zip the dataset directory def zip_directory(directory_path, audio_name): zip_file = f"dataset/{audio_name}.zip" os.makedirs(os.path.dirname(zip_file), exist_ok=True) # Ensure the directory exists with zipfile.ZipFile(zip_file, 'w', zipfile.ZIP_DEFLATED) as zipf: for root, dirs, files in os.walk(directory_path): for file in files: file_path = os.path.join(root, file) arcname = os.path.relpath(file_path, start=directory_path) zipf.write(file_path, arcname) return zip_file # Gradio interface def process_audio(url, audio_name): file_path = download_youtube_audio(url, audio_name) dataset_path = slice_audio(file_path, audio_name) zip_file = zip_directory(dataset_path, audio_name) return zip_file, print(f"{zip_file} successfully processed")