File size: 3,854 Bytes
b05b11d
 
 
ac5d7cd
 
b05b11d
ac5d7cd
b05b11d
ac5d7cd
b05b11d
 
 
 
 
c447cda
 
 
b05b11d
ac5d7cd
 
 
 
 
b05b11d
 
 
 
 
 
 
 
 
 
 
ac5d7cd
 
b05b11d
ac5d7cd
b05b11d
 
 
 
ac5d7cd
b05b11d
 
 
 
 
 
 
ac5d7cd
 
b05b11d
 
 
 
 
 
ac5d7cd
b05b11d
 
 
 
 
 
ac5d7cd
 
 
 
 
 
 
 
b05b11d
 
ac5d7cd
b05b11d
 
 
 
 
 
 
ac5d7cd
b05b11d
 
 
 
 
 
 
 
 
 
 
 
 
 
ac5d7cd
b05b11d
 
 
 
 
ac5d7cd
b05b11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac5d7cd
 
 
b05b11d
 
 
 
 
 
 
 
 
 
 
ac5d7cd
 
b05b11d
ac5d7cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import json
import random

import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline, LCMScheduler

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "stabilityai/stable-diffusion-xl-base-1.0"

pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("jasperai/flash-sdxl", adapter_name="lora")
pipe.load_lora_weights("JacobLinCool/sdxl-lora-gdsc-1", adapter_name="gdsc")
pipe.set_adapters(["lora", "gdsc"], adapter_weights=[1.0, 1.0])
pipe.to(device=DEVICE, dtype=torch.float16)


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU
def infer(
    pre_prompt,
    prompt,
    seed,
    randomize_seed,
    num_inference_steps,
    negative_prompt,
    guidance_scale,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    if pre_prompt != "":
        prompt = f"{pre_prompt} {prompt}"

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
    ).images[0]

    return image


css = """

h1 {
    text-align: center;
    display:block;
}

p {
    text-align: justify;
    display:block;
}

"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column():
            with gr.Row():
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                    scale=5,
                )

                run_button = gr.Button("Run", scale=1)

            result = gr.Image(label="Result", show_label=False)

            with gr.Accordion("Advanced Settings", open=False):

                pre_prompt = gr.Text(
                    label="Pre-Prompt",
                    show_label=True,
                    max_lines=1,
                    placeholder="Pre Prompt from the LoRA config",
                    container=True,
                    scale=5,
                )

                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )

                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                with gr.Row():

                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=4,
                        maximum=8,
                        step=1,
                        value=4,
                    )

                with gr.Row():

                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=1,
                        maximum=6,
                        step=0.5,
                        value=1,
                    )

                negative_prompt = gr.Text(
                    label="Negative Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter a negative Prompt",
                    container=False,
                )

    run_button.click(
        fn=infer,
        inputs=[
            pre_prompt,
            prompt,
            seed,
            randomize_seed,
            num_inference_steps,
            negative_prompt,
            guidance_scale,
        ],
        outputs=[result],
    )


demo.queue().launch()