Spaces:
Runtime error
Runtime error
import json | |
import random | |
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline, LCMScheduler | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
model_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16") | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe.load_lora_weights("jasperai/flash-sdxl", adapter_name="lora") | |
pipe.load_lora_weights("JacobLinCool/sdxl-lora-gdsc-1", adapter_name="gdsc") | |
pipe.set_adapters(["lora", "gdsc"], adapter_weights=[1.0, 1.0]) | |
pipe.to(device=DEVICE, dtype=torch.float16) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer( | |
pre_prompt, | |
prompt, | |
seed, | |
randomize_seed, | |
num_inference_steps, | |
negative_prompt, | |
guidance_scale, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
if pre_prompt != "": | |
prompt = f"{pre_prompt} {prompt}" | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
).images[0] | |
return image | |
css = """ | |
h1 { | |
text-align: center; | |
display:block; | |
} | |
p { | |
text-align: justify; | |
display:block; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
scale=5, | |
) | |
run_button = gr.Button("Run", scale=1) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
pre_prompt = gr.Text( | |
label="Pre-Prompt", | |
show_label=True, | |
max_lines=1, | |
placeholder="Pre Prompt from the LoRA config", | |
container=True, | |
scale=5, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=4, | |
maximum=8, | |
step=1, | |
value=4, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=6, | |
step=0.5, | |
value=1, | |
) | |
negative_prompt = gr.Text( | |
label="Negative Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter a negative Prompt", | |
container=False, | |
) | |
run_button.click( | |
fn=infer, | |
inputs=[ | |
pre_prompt, | |
prompt, | |
seed, | |
randomize_seed, | |
num_inference_steps, | |
negative_prompt, | |
guidance_scale, | |
], | |
outputs=[result], | |
) | |
demo.queue().launch() |