Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,66 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
if torch.cuda.is_available():
|
10 |
-
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.load_lora_weights("JacobLinCool/sdxl-lora-gdsc-1")
|
13 |
-
# pipe.enable_xformers_memory_efficient_attention()
|
14 |
-
pipe = pipe.to(device)
|
15 |
-
else:
|
16 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True)
|
17 |
-
pipe.load_lora_weights("JacobLinCool/sdxl-lora-gdsc-1")
|
18 |
-
pipe = pipe.to(device)
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
-
|
28 |
generator = torch.Generator().manual_seed(seed)
|
29 |
-
|
|
|
|
|
|
|
30 |
image = pipe(
|
31 |
-
prompt
|
32 |
-
negative_prompt
|
33 |
-
guidance_scale
|
34 |
-
num_inference_steps
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
).images[0]
|
39 |
-
|
40 |
return image
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
"""
|
48 |
|
49 |
if torch.cuda.is_available():
|
@@ -52,87 +69,84 @@ else:
|
|
52 |
power_device = "CPU"
|
53 |
|
54 |
with gr.Blocks(css=css) as demo:
|
55 |
-
|
56 |
-
|
57 |
-
gr.Markdown(f"""
|
58 |
-
# Text-to-Image Gradio Template
|
59 |
-
Currently running on {power_device}.
|
60 |
-
""")
|
61 |
-
|
62 |
-
with gr.Row():
|
63 |
-
|
64 |
-
prompt = gr.Text(
|
65 |
-
label="Prompt",
|
66 |
-
show_label=False,
|
67 |
-
max_lines=1,
|
68 |
-
placeholder="Enter your prompt",
|
69 |
-
container=False,
|
70 |
-
)
|
71 |
-
|
72 |
-
run_button = gr.Button("Run", scale=0)
|
73 |
-
|
74 |
-
result = gr.Image(label="Result", show_label=False)
|
75 |
-
|
76 |
-
with gr.Accordion("Advanced Settings", open=False):
|
77 |
-
|
78 |
-
negative_prompt = gr.Text(
|
79 |
-
label="Negative prompt",
|
80 |
-
max_lines=1,
|
81 |
-
placeholder="Enter a negative prompt",
|
82 |
-
visible=False,
|
83 |
-
value="",
|
84 |
-
)
|
85 |
-
|
86 |
-
seed = gr.Slider(
|
87 |
-
label="Seed",
|
88 |
-
minimum=0,
|
89 |
-
maximum=MAX_SEED,
|
90 |
-
step=1,
|
91 |
-
value=0,
|
92 |
-
)
|
93 |
-
|
94 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
95 |
-
|
96 |
with gr.Row():
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
)
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
maximum=10.0,
|
120 |
-
step=0.1,
|
121 |
-
value=0.0,
|
122 |
)
|
123 |
-
|
124 |
-
|
125 |
-
label="
|
126 |
-
minimum=
|
127 |
-
maximum=
|
128 |
step=1,
|
129 |
-
value=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
)
|
131 |
|
132 |
run_button.click(
|
133 |
-
fn
|
134 |
-
inputs
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
)
|
137 |
|
|
|
138 |
demo.queue().launch()
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
+
import spaces
|
|
|
7 |
import torch
|
8 |
+
from diffusers import DiffusionPipeline, LCMScheduler
|
9 |
|
10 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
12 |
+
|
13 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16")
|
14 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
15 |
+
pipe.load_lora_weights("JacobLinCool/sdxl-lora-gdsc-1")
|
16 |
+
pipe.to(device=DEVICE, dtype=torch.float16)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
+
@spaces.GPU
|
23 |
+
def infer(
|
24 |
+
pre_prompt,
|
25 |
+
prompt,
|
26 |
+
seed,
|
27 |
+
randomize_seed,
|
28 |
+
num_inference_steps,
|
29 |
+
negative_prompt,
|
30 |
+
guidance_scale,
|
31 |
+
progress=gr.Progress(track_tqdm=True),
|
32 |
+
):
|
33 |
if randomize_seed:
|
34 |
seed = random.randint(0, MAX_SEED)
|
35 |
+
|
36 |
generator = torch.Generator().manual_seed(seed)
|
37 |
+
|
38 |
+
if pre_prompt != "":
|
39 |
+
prompt = f"{pre_prompt} {prompt}"
|
40 |
+
|
41 |
image = pipe(
|
42 |
+
prompt=prompt,
|
43 |
+
negative_prompt=negative_prompt,
|
44 |
+
guidance_scale=guidance_scale,
|
45 |
+
num_inference_steps=num_inference_steps,
|
46 |
+
generator=generator,
|
47 |
+
).images[0]
|
48 |
+
|
|
|
|
|
49 |
return image
|
50 |
|
51 |
+
|
52 |
+
css = """
|
53 |
+
|
54 |
+
h1 {
|
55 |
+
text-align: center;
|
56 |
+
display:block;
|
57 |
}
|
58 |
+
|
59 |
+
p {
|
60 |
+
text-align: justify;
|
61 |
+
display:block;
|
62 |
+
}
|
63 |
+
|
64 |
"""
|
65 |
|
66 |
if torch.cuda.is_available():
|
|
|
69 |
power_device = "CPU"
|
70 |
|
71 |
with gr.Blocks(css=css) as demo:
|
72 |
+
with gr.Row():
|
73 |
+
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
with gr.Row():
|
75 |
+
prompt = gr.Text(
|
76 |
+
label="Prompt",
|
77 |
+
show_label=False,
|
78 |
+
max_lines=1,
|
79 |
+
placeholder="Enter your prompt",
|
80 |
+
container=False,
|
81 |
+
scale=5,
|
82 |
)
|
83 |
+
|
84 |
+
run_button = gr.Button("Run", scale=1)
|
85 |
+
|
86 |
+
result = gr.Image(label="Result", show_label=False)
|
87 |
+
|
88 |
+
with gr.Accordion("Advanced Settings", open=False):
|
89 |
+
|
90 |
+
pre_prompt = gr.Text(
|
91 |
+
label="Pre-Prompt",
|
92 |
+
show_label=True,
|
93 |
+
max_lines=1,
|
94 |
+
placeholder="Pre Prompt from the LoRA config",
|
95 |
+
container=True,
|
96 |
+
scale=5,
|
|
|
|
|
|
|
97 |
)
|
98 |
+
|
99 |
+
seed = gr.Slider(
|
100 |
+
label="Seed",
|
101 |
+
minimum=0,
|
102 |
+
maximum=MAX_SEED,
|
103 |
step=1,
|
104 |
+
value=0,
|
105 |
+
)
|
106 |
+
|
107 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
108 |
+
|
109 |
+
with gr.Row():
|
110 |
+
|
111 |
+
num_inference_steps = gr.Slider(
|
112 |
+
label="Number of inference steps",
|
113 |
+
minimum=4,
|
114 |
+
maximum=8,
|
115 |
+
step=1,
|
116 |
+
value=4,
|
117 |
+
)
|
118 |
+
|
119 |
+
with gr.Row():
|
120 |
+
|
121 |
+
guidance_scale = gr.Slider(
|
122 |
+
label="Guidance Scale",
|
123 |
+
minimum=1,
|
124 |
+
maximum=6,
|
125 |
+
step=0.5,
|
126 |
+
value=1,
|
127 |
+
)
|
128 |
+
|
129 |
+
negative_prompt = gr.Text(
|
130 |
+
label="Negative Prompt",
|
131 |
+
show_label=False,
|
132 |
+
max_lines=1,
|
133 |
+
placeholder="Enter a negative Prompt",
|
134 |
+
container=False,
|
135 |
)
|
136 |
|
137 |
run_button.click(
|
138 |
+
fn=infer,
|
139 |
+
inputs=[
|
140 |
+
pre_prompt,
|
141 |
+
prompt,
|
142 |
+
seed,
|
143 |
+
randomize_seed,
|
144 |
+
num_inference_steps,
|
145 |
+
negative_prompt,
|
146 |
+
guidance_scale,
|
147 |
+
],
|
148 |
+
outputs=[result],
|
149 |
)
|
150 |
|
151 |
+
|
152 |
demo.queue().launch()
|