import json import random import gradio as gr import numpy as np import spaces import torch from diffusers import DiffusionPipeline, LCMScheduler DEVICE = "cuda" if torch.cuda.is_available() else "cpu" model_id = "stabilityai/stable-diffusion-xl-base-1.0" pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights("jasperai/flash-sdxl", adapter_name="lora") pipe.load_lora_weights("JacobLinCool/sdxl-lora-gdsc-1", adapter_name="gdsc") pipe.set_adapters(["lora", "gdsc"], adapter_weights=[1.0, 1.0]) pipe.to(device=DEVICE, dtype=torch.float16) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU def infer( pre_prompt, prompt, seed, randomize_seed, num_inference_steps, negative_prompt, guidance_scale, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) if pre_prompt != "": prompt = f"{pre_prompt} {prompt}" image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, ).images[0] return image css = """ h1 { text-align: center; display:block; } p { text-align: justify; display:block; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Row(): with gr.Column(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, scale=5, ) run_button = gr.Button("Run", scale=1) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): pre_prompt = gr.Text( label="Pre-Prompt", show_label=True, max_lines=1, placeholder="Pre Prompt from the LoRA config", container=True, scale=5, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=4, maximum=8, step=1, value=4, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=6, step=0.5, value=1, ) negative_prompt = gr.Text( label="Negative Prompt", show_label=False, max_lines=1, placeholder="Enter a negative Prompt", container=False, ) run_button.click( fn=infer, inputs=[ pre_prompt, prompt, seed, randomize_seed, num_inference_steps, negative_prompt, guidance_scale, ], outputs=[result], ) demo.queue().launch()