import pickle import pandas as pd import shap from shap.plots._force_matplotlib import draw_additive_plot import gradio as gr import numpy as np import matplotlib.pyplot as plt # load the model from disk loaded_model = pickle.load(open("heart_xgb.pkl", 'rb')) # Setup SHAP explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. # Create the main function for server def main_func(age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall): new_row = pd.DataFrame.from_dict({'age':age,'sex':sex, 'cp':cp,'trtbps':trtbps,'chol':chol, 'fbs':fbs, 'restecg':restecg,'thalachh':thalachh,'exng':exng, 'oldpeak':oldpeak,'slp':slp,'caa':caa,'thall':thall}, orient = 'index').transpose() prob = loaded_model.predict_proba(new_row) shap_values = explainer(new_row) # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) plot = shap.plots.bar(shap_values[0], max_display=8, order=shap.Explanation.abs, show_data='auto', show=False) plt.tight_layout() local_plot = plt.gcf() plt.close() return {"Low Chance": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot # Create the UI title = "**Heart Attack Predictor & Interpreter** 🪐" description1 = """This app takes info from subjects and predicts their heart attack likelihood. Do not use these results for an actual medical diagnosis.""" description2 = """ To use the app, simply adjust the inputs and click the "Analyze" button. You can also click one of the examples below to see how it's done! """ with gr.Blocks(title=title) as demo: with gr.Row(): with gr.Column(): gr.Markdown(f"# {title}") gr.Markdown(f"## How does it work?") gr.Markdown(description1) gr.Markdown("""---""") gr.Markdown(description2) gr.Markdown("""---""") with gr.Row(): with gr.Column(): gr.Markdown(f"## Edit the Inputs Below:") gr.Markdown("""---""") with gr.Row(): age = gr.Number(label="Age", info="How old are you?", value=40) # sex = gr.Radio(["Male", "Female"], label = "What Gender are you?", type = "index") sex = gr.Radio(["Male", "Female"], label="Sex", info="What gender are you?", type="index") # sex = gr.Radio(choices=["Male", "Female"]) cp = gr.Radio(["Typical Angina", "Atypical Angina", "Non-anginal Pain", "Asymptomatic"], label="Chest Pain", info="What kind of chest pain do you have?", type="index") # cp = gr.Slider(label="Chest Pain Type", minimum=1, maximum=5, value=4, step=1) # trtbps = gr.Slider(label="Resting blood pressure (in mm Hg)", minimum=1, maximum=200, value=4, step=1) trtbps = gr.Number(label="trtbps", value=100) chol = gr.Number(label="chol", value=70) fbs = gr.Radio(["False", "True"], label="fbs", info="Is your fasting blood sugar > 120 mg/dl?" , type="index") # restecg = gr.Slider(label="Resting ECG Score", minimum=1, maximum=5, value=4, step=1) restecg = gr.Dropdown(["Normal", "Having ST-T wave abnormality", "Showing probable or definite left ventricular hypertrophy by Estes' criteria"], label="rest_ecg", type="index") thalachh = gr.Slider(label="thalach Score", minimum=1, maximum=205, value=4, step=1) exng = gr.Radio(["No", "Yes"], label="Exercise Induced Angina", type="index") oldpeak = gr.Slider(label="Oldpeak Score", minimum=1, maximum=10, value=4, step=1) slp = gr.Slider(label="Slp Score", minimum=1, maximum=5, value=4, step=1) caa = gr.Slider(label="Number of Major Vessels", minimum=1, maximum=3, value=3, step=1) thall = gr.Slider(label="Thall Score", minimum=1, maximum=5, value=4, step=1) with gr.Column(): gr.Markdown(f"## Output:") gr.Markdown("""---""") with gr.Column(visible=True) as output_col: label = gr.Label(label = "Predicted Label") local_plot = gr.Plot(label = 'Shap:') gr.Markdown(f"## Examples:") gr.Markdown("""---""") gr.Markdown("### Click on any of the examples below to see how it works:") gr.Examples([[24,"Male","Typical Angina",4,5,"True","Normal",4,"No",5,1,2,3], [24,"Female","Asymptomatic",4,5,"False","Normal",2,"Yes",1,1,2,3]], [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall], [label,local_plot], main_func, cache_examples=True) submit_btn = gr.Button("Analyze", variant="primary") gr.Markdown("""---""") gr.Markdown(f"## Data Dictionary:") gr.Markdown(""" Age : Age of the patient Sex : Sex of the patient trtbps : resting blood pressure (in mm Hg) chol : cholestoral in mg/dl fetched via BMI sensor fbs : (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false) rest_ecg : resting electrocardiographic results Value 0: normal Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV) Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria thalach : maximum heart rate achieved target : 0 = less chance of heart attack 1= more chance of heart attack""") submit_btn.click( main_func, [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall], [label,local_plot], api_name="Heart_Predictor" ) demo.launch()