JaganathC's picture
Update app.py
3395ade
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import GradientBoostingClassifier
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
st.title('Kidney Disease Prediction Application')
st.write('''
Please fill in the attributes below, then hit the Predict button
to get your results.
''')
st.header('Input Attributes')
age = st.slider('Your Age (Years)', min_value=0.0, max_value=100.0, value=50.0, step=1.0)
st.write(''' ''')
bp = st.slider('Blood Pressure (mm/Hg)', min_value=0.0, max_value=200.0, value=150.0, step=1.0)
st.write(''' ''')
s = st.radio("Specific Gravity (SG)", ('SG 1.005: Very Low Urnine Concentration', 'SG 1.010: Moderately Low Urnine Concentration', 'SG 1.015: Normal', 'SG 1.020: Slightly High Urine Concentration','SG 1.025: High Urine Concentration'))
st.write(''' ''')
# Specific Gravity
if s == "SG 1.005: Very Low Urnine Concentration":
sg = 1.005
elif s == "SG 1.010: Moderately Low Urnine Concentration":
sg = 1.010
elif s == "SG 1.015: Normal":
sg = 1.015
elif s == "SG 1.020: Slightly High Urine Concentration":
sg = 1.020
else:
sg = 1.025
a = st.radio("Albumin Level (g/L)", ('Low (less then 33.9)', 'Slightly Low (33.9-35)', 'Normal (35 – 50 g/L)', 'Slightly High (50 - 51.5)', 'High (51.5 - 150)' , 'Extremely High (Over 150)'))
st.write(''' ''')
# Specific Gravity
if a == "Low (less then 33.9)":
al = 0
elif a == "Slightly Low (33.9-35)":
al = 1
elif a == "Normal (35 – 50 g/L)":
al = 2
elif a == "Slightly High (50 - 51.5)":
al = 3
elif a == "High (51.5 - 100)":
al = 4
else:
al = 5
sug = st.radio("Sugar Level", ('Low', 'Slightly Low', 'Normal', 'Slightly High', 'High' , 'Extremely High'))
st.write(''' ''')
# Specific Gravity
if sug == "Low)":
sugar = 0
elif sug == "Slightly Low":
sugar = 1
elif sug == "Normal":
sugar = 2
elif sug == "Slightly High":
sugar = 3
elif sug == "High":
sugar = 4
else:
sugar = 5
red = st.radio("Red Blood Cell Count", ('Normal', 'Abnormal'))
st.write(''' ''')
# blood cell
if red == "Normal":
rbc = 0
else:
rbc = 1
pus = st.radio("Pus Cell Count", ('Normal', 'Abnormal'))
st.write(''' ''')
# pus cell
if pus == "Normal":
pc = 0
else:
pc = 1
pusc = st.radio("Pus Cell Clumps", ('Present', 'Not Present'))
st.write(''' ''')
# pus cell
if pusc == "Present":
pcc = 1
else:
pcc = 0
ba = st.radio("Bacterial Infection", ('Present', 'Not Present'))
st.write(''' ''')
# pus cell
if ba == "Present":
bac = 1
else:
bac = 0
bgr = st.slider('Blood Glucose Random (mgs/dl)', min_value=0.0, max_value=600.0, value=300.0, step=1.0)
st.write(''' ''')
bu = st.slider('Blood Urea (mgs/dl)', min_value=0.0, max_value=500.0, value=250.0, step=0.1)
st.write(''' ''')
sc = st.slider('Serum Creatinine (mgs/dl)', min_value=0.0, max_value=100.0, value=50.0, step=0.1)
st.write(''' ''')
sod = st.slider('Sodium (mEq/L)', min_value=0.0, max_value=200.0, value=100.0, step=0.1)
st.write(''' ''')
pot = st.slider('Potassium (mEq/L)', min_value=0.0, max_value=100.0, value=50.0, step=0.1)
st.write(''' ''')
hemo = st.slider('Hemoglobin (gms)', min_value=0.0, max_value=20.0, value=10.0, step=0.1)
st.write(''' ''')
pcv = st.slider('Packed Cell Volume', min_value=0.0, max_value=100.0, value=50.0, step=0.1)
st.write(''' ''')
wbc = st.slider('White Blood Cell Count (cells/cumm)', min_value=0.0, max_value=50000.0, value=25000.0, step=1.0)
st.write(''' ''')
rbcc = st.slider('Red Blood Cell Count (millions/cmm)', min_value=0.0, max_value=200.0, value=100.0, step=1.0)
st.write(''' ''')
hyp = st.radio("Hypertension", ('Yes', 'No'))
st.write(''' ''')
if hyp == "Yes":
htn = 1
else:
htn = 0
diam = st.radio("Diabetes Mellitus", ('Yes', 'No'))
st.write(''' ''')
if diam == "Yes":
dm = 1
else:
dm = 0
cor = st.radio("Coronary Artery Disease", ('Yes', 'No'))
st.write(''' ''')
if cor == "Yes":
cad = 1
else:
cad = 0
app = st.radio("Appetite", ('Good', 'Poor'))
st.write(''' ''')
if app == "Good":
appet = 1
else:
appet = 0
pedal = st.radio("Pedal Edema", ('Yes', 'No'))
st.write(''' ''')
if pedal == "Yes":
pe = 1
else:
pe = 0
anemia = st.radio("Anemia", ('Yes', 'No'))
st.write(''' ''')
if anemia == "Yes":
ane = 1
else:
ane = 0
selected_models = st.multiselect("Choose Classifier Models", ('Random Forest', 'Naïve Bayes', 'Logistic Regression', 'Decision Tree', 'XGBoost'))
st.write(''' ''')
# Initialize an empty list to store the selected models
models_to_run = []
# Check which models were selected and add them to the models_to_run list
if 'Random Forest' in selected_models:
models_to_run.append(RandomForestClassifier())
if 'Naïve Bayes' in selected_models:
models_to_run.append(GaussianNB())
if 'Logistic Regression' in selected_models:
models_to_run.append(LogisticRegression())
if 'Decision Tree' in selected_models:
models_to_run.append(DecisionTreeClassifier())
if 'Gradient Boosting' in selected_models:
models_to_run.append(GradientBoostingClassifier())
if 'Support Vector Machine' in selected_models:
models_to_run.append(SVC())
if 'LightGBM' in selected_models:
models_to_run.append(LGBMClassifier())
if 'XGBoost' in selected_models:
models_to_run.append(XGBClassifier())
user_input = np.array([age, bp, sg, al, sugar, rbc, pc, pcc, bac, bgr, bu, sc,
sod, pot, hemo, pcv, wbc, rbcc, htn, dm, cad, appet, pe, ane]).reshape(1, -1)
# import dataset
def get_dataset():
data = pd.read_csv('kidney.csv')
# Calculate the correlation matrix
# corr_matrix = data.corr()
# Create a heatmap of the correlation matrix
# plt.figure(figsize=(10, 8))
# sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
# plt.title('Correlation Matrix')
# plt.xticks(rotation=45)
# plt.yticks(rotation=0)
# plt.tight_layout()
# Display the heatmap in Streamlit
# st.pyplot()
return data
def generate_model_labels(model_names):
model_labels = []
for name in model_names:
words = name.split()
if len(words) > 1:
# Multiple words, use initials
label = "".join(word[0] for word in words)
else:
# Single word, take the first 3 letters
label = name[:3]
model_labels.append(label)
return model_labels
if st.button('Submit'):
df = get_dataset()
# fix column names
df.columns = (["id", "age", "bp", "sg", "al", "su", "rbc", "pc",
"pcc", "ba", "bgr", "bu", "sc", "sod", "pot", "hemo", "pcv",
"wc", "rc", "htn", "dm", "cad", "appet", "pe", "ane", "class"])
# Transforming classification into numerical format
df['class'] = df['class'].apply(lambda x: 1 if x == 'ckd' else 0)
# Transforming ane into numerical format
df['ane'] = df['ane'].apply(lambda x: 1 if x == 'yes' else 0)
# Transforming pe into numerical format
df['pe'] = df['pe'].apply(lambda x: 1 if x == 'yes' else 0)
# Transforming appet into numerical format
df['appet'] = df['appet'].apply(lambda x: 1 if x == 'poor' else 0)
# Transforming cad into numerical format
df['cad'] = df['cad'].apply(lambda x: 1 if x == 'yes' else 0)
# Transforming dm into numerical format
df['dm'] = df['dm'].apply(lambda x: 1 if x == 'yes' else 0)
# Transforming htn into numerical format
df['htn'] = df['htn'].apply(lambda x: 1 if x == 'yes' else 0)
# Transforming ba into numerical format
df['ba'] = df['ba'].apply(lambda x: 1 if x == 'present' else 0)
# Transforming pcc into numerical format
df['pcc'] = df['pcc'].apply(lambda x: 1 if x == 'present' else 0)
# Transforming pc into numerical format
df['pc'] = df['pc'].apply(lambda x: 1 if x == 'abnormal' else 0)
# Transforming rbc into numerical format
df['rbc'] = df['rbc'].apply(lambda x: 1 if x == 'abnormal' else 0)
# Replace NaN values with median for float columns
float_columns = df.select_dtypes(include=['float']).columns
df[float_columns] = df[float_columns].fillna(df[float_columns].median())
# Convert columns to numeric
numeric_columns = ['pcv', 'wc', 'rc']
df[numeric_columns] = df[numeric_columns].apply(pd.to_numeric, errors='coerce')
# Replace NaN values with median for numeric columns
df[numeric_columns] = df[numeric_columns].fillna(df[numeric_columns].median())
# Split the dataset into train and test
X = df.drop(['class','id'], axis=1)
y = df['class']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create two columns to divide the screen
left_column, right_column = st.columns(2)
# Left column content
with left_column:
# Create a VotingClassifier with the top 3 models
ensemble = VotingClassifier(
estimators=[('rf', RandomForestClassifier()), ('xgb', XGBClassifier()), ('gb', GradientBoostingClassifier())],
voting='hard')
# Fit the voting classifier to the training data
ensemble.fit(X_train, y_train)
# Make predictions on the test set
model_predictions = ensemble.predict(user_input)
# Evaluate the model's performance on the test set
ensamble_accuracy = accuracy_score(y_test, ensemble.predict(X_test))
ensamble_precision = precision_score(y_test, ensemble.predict(X_test))
ensamble_recall = recall_score(y_test, ensemble.predict(X_test))
ensamble_f1score = f1_score(y_test, ensemble.predict(X_test))
if model_predictions == 1:
st.write(f'According to Ensemble Model You have a **Very High Chance (1)** of Kidney Disease.')
else:
st.write(f'According to Ensemble Model You have a **Very Low Chance (0)** of Kidney Disease.')
st.write('Ensemble Model Accuracy:', ensamble_accuracy)
st.write('Ensemble Model Precision:', ensamble_precision)
st.write('Ensemble Model Recall:', ensamble_recall)
st.write('Ensemble Model F1 Score:', ensamble_f1score)
st.write('------------------------------------------------------------------------------------------------------')
# Right column content
with right_column:
for model in models_to_run:
# Train the selected model
model.fit(X_train, y_train)
# Make predictions on the test set
model_predictions = model.predict(user_input)
# Evaluate the model's performance on the test set
model_accuracy = accuracy_score(y_test, model.predict(X_test))
model_precision = precision_score(y_test, model.predict(X_test))
model_recall = recall_score(y_test, model.predict(X_test))
model_f1score = f1_score(y_test, model.predict(X_test))
if model_predictions == 1:
st.write(f'According to {type(model).__name__} Model You have a **Very High Chance (1)** of Kidney Disease.')
else:
st.write(f'According to {type(model).__name__} Model You have a **Very Low Chance (0)** of Kidney Disease.')
st.write(f'{type(model).__name__} Accuracy:', model_accuracy)
st.write(f'{type(model).__name__} Precision:', model_precision)
st.write(f'{type(model).__name__} Recall:', model_recall)
st.write(f'{type(model).__name__} F1 Score:', model_f1score)
st.write('------------------------------------------------------------------------------------------------------')
# Initialize lists to store model names and their respective performance metrics
model_names = ['Ensemble']
accuracies = [ensamble_accuracy]
precisions = [ensamble_precision]
recalls = [ensamble_recall]
f1_scores = [ensamble_f1score]
# Loop through the selected models to compute their performance metrics
for model in models_to_run:
model_names.append(type(model).__name__)
model.fit(X_train, y_train)
model_predictions = model.predict(X_test)
accuracies.append(accuracy_score(y_test, model_predictions))
precisions.append(precision_score(y_test, model_predictions))
recalls.append(recall_score(y_test, model_predictions))
f1_scores.append(f1_score(y_test, model_predictions))
# Create a DataFrame to store the performance metrics
metrics_df = pd.DataFrame({
'Model': model_names,
'Accuracy': accuracies,
'Precision': precisions,
'Recall': recalls,
'F1 Score': f1_scores
})
# Get the model labels
model_labels = generate_model_labels(metrics_df['Model'])
# Plot the comparison graphs
plt.figure(figsize=(12, 10))
# Accuracy comparison
plt.subplot(2, 2, 1)
plt.bar(model_labels, metrics_df['Accuracy'], color='skyblue')
plt.title('Accuracy Comparison')
plt.ylim(0, 1)
# Precision comparison
plt.subplot(2, 2, 2)
plt.bar(model_labels, metrics_df['Precision'], color='orange')
plt.title('Precision Comparison')
plt.ylim(0, 1)
# Recall comparison
plt.subplot(2, 2, 3)
plt.bar(model_labels, metrics_df['Recall'], color='green')
plt.title('Recall Comparison')
plt.ylim(0, 1)
# F1 Score comparison
plt.subplot(2, 2, 4)
plt.bar(model_labels, metrics_df['F1 Score'], color='purple')
plt.title('F1 Score Comparison')
plt.ylim(0, 1)
# Adjust layout to prevent overlapping of titles
plt.tight_layout()
# Display the graphs in Streamlit
st.pyplot()