Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import yt_dlp
|
4 |
+
import os
|
5 |
+
import subprocess
|
6 |
+
import json
|
7 |
+
from threading import Thread
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
+
import spaces
|
10 |
+
import moviepy.editor as mp
|
11 |
+
import time
|
12 |
+
import langdetect
|
13 |
+
import uuid
|
14 |
+
|
15 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
+
print("Starting the program...")
|
17 |
+
|
18 |
+
model_path = "internlm/internlm2_5-7b-chat"
|
19 |
+
print(f"Loading model {model_path}...")
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
22 |
+
model = model.eval()
|
23 |
+
print("Model successfully loaded.")
|
24 |
+
|
25 |
+
def generate_unique_filename(extension):
|
26 |
+
return f"{uuid.uuid4()}{extension}"
|
27 |
+
|
28 |
+
def cleanup_files(*files):
|
29 |
+
for file in files:
|
30 |
+
if file and os.path.exists(file):
|
31 |
+
os.remove(file)
|
32 |
+
print(f"Removed file: {file}")
|
33 |
+
|
34 |
+
def download_youtube_audio(url):
|
35 |
+
print(f"Downloading audio from YouTube: {url}")
|
36 |
+
output_path = generate_unique_filename(".wav")
|
37 |
+
ydl_opts = {
|
38 |
+
'format': 'bestaudio/best',
|
39 |
+
'postprocessors': [{
|
40 |
+
'key': 'FFmpegExtractAudio',
|
41 |
+
'preferredcodec': 'wav',
|
42 |
+
}],
|
43 |
+
'outtmpl': output_path,
|
44 |
+
'keepvideo': True,
|
45 |
+
}
|
46 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
47 |
+
ydl.download([url])
|
48 |
+
|
49 |
+
# Check if the file was renamed to .wav.wav
|
50 |
+
if os.path.exists(output_path + ".wav"):
|
51 |
+
os.rename(output_path + ".wav", output_path)
|
52 |
+
|
53 |
+
if os.path.exists(output_path):
|
54 |
+
print(f"Audio download completed. File saved at: {output_path}")
|
55 |
+
print(f"File size: {os.path.getsize(output_path)} bytes")
|
56 |
+
else:
|
57 |
+
print(f"Error: File {output_path} not found after download.")
|
58 |
+
|
59 |
+
return output_path
|
60 |
+
|
61 |
+
|
62 |
+
def transcribe_audio(file_path):
|
63 |
+
print(f"Starting transcription of file: {file_path}")
|
64 |
+
temp_audio = None
|
65 |
+
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
|
66 |
+
print("Video file detected. Extracting audio...")
|
67 |
+
try:
|
68 |
+
video = mp.VideoFileClip(file_path)
|
69 |
+
temp_audio = generate_unique_filename(".wav")
|
70 |
+
video.audio.write_audiofile(temp_audio)
|
71 |
+
file_path = temp_audio
|
72 |
+
except Exception as e:
|
73 |
+
print(f"Error extracting audio from video: {e}")
|
74 |
+
raise
|
75 |
+
|
76 |
+
print(f"Does the file exist? {os.path.exists(file_path)}")
|
77 |
+
print(f"File size: {os.path.getsize(file_path) if os.path.exists(file_path) else 'N/A'} bytes")
|
78 |
+
|
79 |
+
output_file = generate_unique_filename(".json")
|
80 |
+
command = [
|
81 |
+
"insanely-fast-whisper",
|
82 |
+
"--file-name", file_path,
|
83 |
+
"--device-id", "0",
|
84 |
+
"--model-name", "openai/whisper-large-v3",
|
85 |
+
"--task", "transcribe",
|
86 |
+
"--timestamp", "chunk",
|
87 |
+
"--transcript-path", output_file
|
88 |
+
]
|
89 |
+
print(f"Executing command: {' '.join(command)}")
|
90 |
+
try:
|
91 |
+
result = subprocess.run(command, check=True, capture_output=True, text=True)
|
92 |
+
print(f"Standard output: {result.stdout}")
|
93 |
+
print(f"Error output: {result.stderr}")
|
94 |
+
except subprocess.CalledProcessError as e:
|
95 |
+
print(f"Error running insanely-fast-whisper: {e}")
|
96 |
+
print(f"Standard output: {e.stdout}")
|
97 |
+
print(f"Error output: {e.stderr}")
|
98 |
+
raise
|
99 |
+
|
100 |
+
print(f"Reading transcription file: {output_file}")
|
101 |
+
try:
|
102 |
+
with open(output_file, "r") as f:
|
103 |
+
transcription = json.load(f)
|
104 |
+
except json.JSONDecodeError as e:
|
105 |
+
print(f"Error decoding JSON: {e}")
|
106 |
+
print(f"File content: {open(output_file, 'r').read()}")
|
107 |
+
raise
|
108 |
+
|
109 |
+
if "text" in transcription:
|
110 |
+
result = transcription["text"]
|
111 |
+
else:
|
112 |
+
result = " ".join([chunk["text"] for chunk in transcription.get("chunks", [])])
|
113 |
+
|
114 |
+
print("Transcription completed.")
|
115 |
+
|
116 |
+
# Cleanup
|
117 |
+
cleanup_files(output_file)
|
118 |
+
if temp_audio:
|
119 |
+
cleanup_files(temp_audio)
|
120 |
+
|
121 |
+
return result
|
122 |
+
|
123 |
+
@spaces.GPU(duration=90)
|
124 |
+
def generate_summary_stream(transcription):
|
125 |
+
print("Starting summary generation...")
|
126 |
+
print(f"Transcription length: {len(transcription)} characters")
|
127 |
+
|
128 |
+
detected_language = langdetect.detect(transcription)
|
129 |
+
|
130 |
+
prompt = f"""Summarize the following video transcription in 150-300 words.
|
131 |
+
The summary should be in the same language as the transcription, which is detected as {detected_language}.
|
132 |
+
Please ensure that the summary captures the main points and key ideas of the transcription:
|
133 |
+
{transcription[:300000]}..."""
|
134 |
+
|
135 |
+
response, history = model.chat(tokenizer, prompt, history=[])
|
136 |
+
print(f"Final summary generated: {response[:100]}...")
|
137 |
+
print("Summary generation completed.")
|
138 |
+
return response
|
139 |
+
|
140 |
+
def process_youtube(url):
|
141 |
+
if not url:
|
142 |
+
print("YouTube URL not provided.")
|
143 |
+
return "Please enter a YouTube URL.", None
|
144 |
+
print(f"Processing YouTube URL: {url}")
|
145 |
+
|
146 |
+
audio_file = None
|
147 |
+
try:
|
148 |
+
audio_file = download_youtube_audio(url)
|
149 |
+
if not os.path.exists(audio_file):
|
150 |
+
raise FileNotFoundError(f"File {audio_file} does not exist after download.")
|
151 |
+
|
152 |
+
print(f"Audio file found: {audio_file}")
|
153 |
+
print("Starting transcription...")
|
154 |
+
transcription = transcribe_audio(audio_file)
|
155 |
+
print(f"Transcription completed. Length: {len(transcription)} characters")
|
156 |
+
return transcription, None
|
157 |
+
except Exception as e:
|
158 |
+
print(f"Error processing YouTube: {e}")
|
159 |
+
return f"Processing error: {str(e)}", None
|
160 |
+
finally:
|
161 |
+
if audio_file and os.path.exists(audio_file):
|
162 |
+
cleanup_files(audio_file)
|
163 |
+
print(f"Directory content after processing: {os.listdir('.')}")
|
164 |
+
|
165 |
+
def process_uploaded_video(video_path):
|
166 |
+
print(f"Processing uploaded video: {video_path}")
|
167 |
+
try:
|
168 |
+
print("Starting transcription...")
|
169 |
+
transcription = transcribe_audio(video_path)
|
170 |
+
print(f"Transcription completed. Length: {len(transcription)} characters")
|
171 |
+
return transcription, None
|
172 |
+
except Exception as e:
|
173 |
+
print(f"Error processing video: {e}")
|
174 |
+
return f"Processing error: {str(e)}", None
|
175 |
+
|
176 |
+
print("Setting up Gradio interface...")
|
177 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
178 |
+
gr.Markdown(
|
179 |
+
"""
|
180 |
+
# π₯ Video Transcription and Smart Summary
|
181 |
+
|
182 |
+
"""
|
183 |
+
)
|
184 |
+
|
185 |
+
with gr.Tabs():
|
186 |
+
with gr.TabItem("π€ Video Upload"):
|
187 |
+
video_input = gr.Video(label="Drag and drop or click to upload")
|
188 |
+
video_button = gr.Button("π Process Video", variant="primary")
|
189 |
+
|
190 |
+
with gr.TabItem("π YouTube Link"):
|
191 |
+
url_input = gr.Textbox(label="Paste YouTube URL here", placeholder="https://www.youtube.com/watch?v=...")
|
192 |
+
url_button = gr.Button("π Process URL", variant="primary")
|
193 |
+
|
194 |
+
with gr.Row():
|
195 |
+
with gr.Column():
|
196 |
+
transcription_output = gr.Textbox(label="π Transcription", lines=10, show_copy_button=True)
|
197 |
+
with gr.Column():
|
198 |
+
summary_output = gr.Textbox(label="π Summary", lines=10, show_copy_button=True)
|
199 |
+
|
200 |
+
summary_button = gr.Button("π Generate Summary", variant="secondary")
|
201 |
+
|
202 |
+
gr.Markdown(
|
203 |
+
"""
|
204 |
+
### How to use:
|
205 |
+
1. Upload a video or paste a YouTube link.
|
206 |
+
2. Click 'Process' to get the transcription.
|
207 |
+
3. Click 'Generate Summary' to get a summary of the content.
|
208 |
+
|
209 |
+
*Note: Processing may take a few minutes depending on the video length.*
|
210 |
+
"""
|
211 |
+
)
|
212 |
+
|
213 |
+
def process_video_and_update(video):
|
214 |
+
if video is None:
|
215 |
+
return "No video uploaded.", "Please upload a video."
|
216 |
+
print(f"Video received: {video}")
|
217 |
+
transcription, _ = process_uploaded_video(video)
|
218 |
+
print(f"Returned transcription: {transcription[:100] if transcription else 'No transcription generated'}...")
|
219 |
+
return transcription or "Transcription error", ""
|
220 |
+
|
221 |
+
video_button.click(process_video_and_update, inputs=[video_input], outputs=[transcription_output, summary_output])
|
222 |
+
url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
|
223 |
+
summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output])
|
224 |
+
|
225 |
+
print("Launching Gradio interface...")
|
226 |
+
demo.launch()
|