Upload 3 files
Browse filesBasic functionalities
- app.py +19 -57
- embeddings.csv +0 -0
- rag.py +97 -0
app.py
CHANGED
@@ -1,58 +1,20 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
import spaces
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
messages.append({"role": "user", "content": val[0]})
|
21 |
-
if val[1]:
|
22 |
-
messages.append({"role": "assistant", "content": val[1]})
|
23 |
-
|
24 |
-
messages.append({"role": "user", "content": message})
|
25 |
-
|
26 |
-
response = ""
|
27 |
-
|
28 |
-
for message in client.chat_completion(
|
29 |
-
messages,
|
30 |
-
max_tokens=max_tokens,
|
31 |
-
stream=True,
|
32 |
-
temperature=temperature,
|
33 |
-
top_p=top_p,
|
34 |
-
):
|
35 |
-
token = message.choices[0].delta.content
|
36 |
-
|
37 |
-
response += token
|
38 |
-
yield response
|
39 |
-
|
40 |
-
demo = gr.ChatInterface(
|
41 |
-
respond,
|
42 |
-
additional_inputs=[
|
43 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
44 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
45 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
46 |
-
gr.Slider(
|
47 |
-
minimum=0.1,
|
48 |
-
maximum=1.0,
|
49 |
-
value=0.95,
|
50 |
-
step=0.05,
|
51 |
-
label="Top-p (nucleus sampling)",
|
52 |
-
),
|
53 |
-
],
|
54 |
-
)
|
55 |
-
|
56 |
-
|
57 |
-
if __name__ == "__main__":
|
58 |
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
import spaces
|
4 |
+
from rag import RAG
|
5 |
+
|
6 |
+
r = RAG()
|
7 |
+
|
8 |
+
@spaces.GPU
|
9 |
+
def respond(text,history):
|
10 |
+
return r.query(text)
|
11 |
+
|
12 |
+
demo = gr.ChatInterface(
|
13 |
+
respond,
|
14 |
+
title="LAW LM",
|
15 |
+
description="Ask legal questions",
|
16 |
+
chatbot=gr.Chatbot(placeholder="Type your text here...")
|
17 |
+
)
|
18 |
+
|
19 |
+
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
demo.launch()
|
embeddings.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
rag.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from sentence_transformers import SentenceTransformer,util
|
5 |
+
from transformers import AutoTokenizer , AutoModelForCausalLM
|
6 |
+
|
7 |
+
|
8 |
+
class RAG:
|
9 |
+
|
10 |
+
def __init__(self):
|
11 |
+
self.model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
12 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
local_dir = "llm_models/"
|
14 |
+
|
15 |
+
self.embedding_model_name = "all-mpnet-base-v2"
|
16 |
+
self.embeddings_filename = "data/embeddings.csv"
|
17 |
+
|
18 |
+
self.data_pd = pd.read_csv(self.embeddings_filename)
|
19 |
+
self.data_dict = pd.read_csv(self.embeddings_filename).to_dict(orient='records')
|
20 |
+
|
21 |
+
self.data_embeddings = self.get_embeddings()
|
22 |
+
|
23 |
+
# Embedding model
|
24 |
+
self.embedding_model = SentenceTransformer(model_name_or_path = self.embedding_model_name,device = self.device)
|
25 |
+
# Tokenizer
|
26 |
+
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=self.model_id,
|
27 |
+
cache_dir = local_dir)
|
28 |
+
# LLM
|
29 |
+
self.llm_model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=self.model_id,
|
30 |
+
cache_dir = local_dir).to(self.device)
|
31 |
+
|
32 |
+
def get_embeddings(self) -> list:
|
33 |
+
"""Returns the embeddings from the csv file"""
|
34 |
+
data_embeddings = []
|
35 |
+
|
36 |
+
for tensor_str in self.data_pd["embeddings"]:
|
37 |
+
values_str = tensor_str.split("[")[1].split("]")[0]
|
38 |
+
values_list = [float(val) for val in values_str.split(",")]
|
39 |
+
tensor_result = torch.tensor(values_list)
|
40 |
+
data_embeddings.append(tensor_result)
|
41 |
+
|
42 |
+
data_embeddings = torch.stack(data_embeddings).to(self.device)
|
43 |
+
return data_embeddings
|
44 |
+
|
45 |
+
|
46 |
+
def retrieve_relevant_resource(self,user_query : str , k = 5):
|
47 |
+
"""Function to retrieve relevant resource"""
|
48 |
+
query_embedding = self.embedding_model.encode(user_query, convert_to_tensor = True).to(self.device)
|
49 |
+
dot_score = util.dot_score( a = query_embedding, b = self.data_embeddings)[0]
|
50 |
+
score , idx = torch.topk(dot_score,k=k)
|
51 |
+
return score,idx
|
52 |
+
|
53 |
+
def prompt_formatter(self,query: str, context_items: list[dict]) -> str:
|
54 |
+
"""
|
55 |
+
Augments query with text-based context from context_items.
|
56 |
+
"""
|
57 |
+
# Join context items into one dotted paragraph
|
58 |
+
context = "- " + "\n- ".join([item["sentence_chunk"] for item in context_items])
|
59 |
+
|
60 |
+
base_prompt = """You are a friendly lawyer chatbot who always responds in the style of a judge
|
61 |
+
Based on the following context items, please answer the query.
|
62 |
+
\nNow use the following context items to answer the user query:
|
63 |
+
{context}
|
64 |
+
\nRelevant passages: <extract relevant passages from the context here>"""
|
65 |
+
|
66 |
+
# Update base prompt with context items and query
|
67 |
+
base_prompt = base_prompt.format(context=context)
|
68 |
+
|
69 |
+
# Create prompt template for instruction-tuned model
|
70 |
+
dialogue_template = [
|
71 |
+
{
|
72 |
+
"role" : "system",
|
73 |
+
"content" : base_prompt,
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"role": "user",
|
77 |
+
"content": query,
|
78 |
+
},
|
79 |
+
]
|
80 |
+
|
81 |
+
# Apply the chat template
|
82 |
+
prompt = self.tokenizer.apply_chat_template(conversation=dialogue_template,
|
83 |
+
tokenize=False,
|
84 |
+
add_generation_prompt=True)
|
85 |
+
return prompt
|
86 |
+
|
87 |
+
def query(self,user_text : str):
|
88 |
+
scores, indices = self.retrieve_relevant_resource(user_text)
|
89 |
+
context_items = [self.data_dict[i] for i in indices]
|
90 |
+
prompt = self.prompt_formatter(query=user_text,context_items=context_items)
|
91 |
+
input_ids = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
92 |
+
outputs = self.llm_model.generate(**input_ids,max_new_tokens=512)
|
93 |
+
output_text = self.tokenizer.decode(outputs[0])
|
94 |
+
output_text = output_text.split("<|assistant|>")
|
95 |
+
output_text = output_text[1].split("</s>")[0]
|
96 |
+
|
97 |
+
return output_text
|