da1 / main.py
Jamiiwej2903's picture
Create main.py
d0443bf verified
raw
history blame
1.79 kB
from fastapi import FastAPI
from pydantic import BaseModel
from huggingface_hub import InferenceClient
from fastapi.responses import StreamingResponse
app = FastAPI()
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.0
max_new_tokens: int = 1048
top_p: float = 0.15
repetition_penalty: float = 1.0
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
async def generate_stream(item: Item):
try:
temperature = max(float(item.temperature), 1e-2)
top_p = float(item.top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=item.max_new_tokens,
top_p=top_p,
repetition_penalty=item.repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
for response in stream:
yield response.token.text
except Exception as e:
print(f"Error in generate_stream: {e}")
finally:
if 'stream' in locals():
stream.close()
@app.post("/generate/")
async def generate_text(item: Item):
try:
return StreamingResponse(generate_stream(item), media_type="text/plain")
except Exception as e:
print(f"Error in generate_text: {e}")
return {"error": str(e)}