import numpy as np from deepface import DeepFace import gradio as gr def save_identity(image , name): try: embeddings = DeepFace.represent(image , model_name="Facenet") return str(embeddings) except Exception as error: return str(error) # image_input = gr.inputs.Image(shape=(160,160)) label_output = gr.outputs.Textbox() # Create the Gradio interface # gr.Interface(fn=predict_image, inputs=image_input, outputs=label_output).launch() # Create Gradio interfaces for input and output image_input = gr.inputs.Image(shape=(160, 160)) label_input = gr.inputs.Textbox(label="Enter Label") output_image = gr.outputs.Image(type="numpy") # Create the Gradio interface interface = gr.Interface( fn=save_identity, inputs=[image_input, label_input], outputs=label_output, title="Face Identification", description="Upload an image, enter a label, and get the output image.", ) # Launch the Gradio interface interface.launch()