File size: 20,690 Bytes
d76d8fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
import os
import json
import shutil
import uuid
import tempfile
import subprocess
import re
import time
import traceback

import gradio as gr
import pytube as pt

import nemo.collections.asr as nemo_asr
import torch

import speech_to_text_buffered_infer_ctc as buffered_ctc
import speech_to_text_buffered_infer_rnnt as buffered_rnnt
from nemo.utils import logging

# Set NeMo cache dir as /tmp
from nemo import constants

os.environ[constants.NEMO_ENV_CACHE_DIR] = "/tmp/nemo/"


SAMPLE_RATE = 16000  # Default sample rate for ASR
BUFFERED_INFERENCE_DURATION_THRESHOLD = 60.0  # 60 second and above will require chunked inference.
CHUNK_LEN_IN_SEC = 20.0  # Chunk size
BUFFER_LEN_IN_SEC = 30.0  # Total buffer size

TITLE = "NeMo ASR Inference on Hugging Face"
DESCRIPTION = "Demo of all languages supported by NeMo ASR"
DEFAULT_EN_MODEL = "nvidia/stt_en_conformer_transducer_xlarge"
DEFAULT_BUFFERED_EN_MODEL = "nvidia/stt_en_conformer_transducer_large"

# Pre-download and cache the model in disk space
logging.setLevel(logging.ERROR)
tmp_model = nemo_asr.models.ASRModel.from_pretrained(DEFAULT_BUFFERED_EN_MODEL, map_location='cpu')
del tmp_model
logging.setLevel(logging.INFO)

MARKDOWN = f"""
# {TITLE}

## {DESCRIPTION}
"""

CSS = """
p.big {
  font-size: 20px;
}

/* From https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition/blob/main/app.py */

.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%;font-size:20px;}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""

ARTICLE = """
<br><br>
<p class='big' style='text-align: center'>
    <a href='https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/intro.html' target='_blank'>NeMo ASR</a> 
    | 
    <a href='https://github.com/NVIDIA/NeMo#nvidia-nemo' target='_blank'>Github Repo</a>
</p>
"""

SUPPORTED_LANGUAGES = set([])
SUPPORTED_MODEL_NAMES = set([])

# HF models, grouped by language identifier
hf_filter = nemo_asr.models.ASRModel.get_hf_model_filter()
hf_filter.task = "automatic-speech-recognition"

hf_infos = nemo_asr.models.ASRModel.search_huggingface_models(model_filter=hf_filter)
for info in hf_infos:
    print("Model ID:", info.modelId)
    try:
        lang_id = info.modelId.split("_")[1]  # obtains lang id as str
    except Exception:
        print("WARNING: Skipping model id -", info)
        continue

    SUPPORTED_LANGUAGES.add(lang_id)
    SUPPORTED_MODEL_NAMES.add(info.modelId)

SUPPORTED_MODEL_NAMES = sorted(list(SUPPORTED_MODEL_NAMES))

# DEBUG FILTER
# SUPPORTED_MODEL_NAMES = list(filter(lambda x: "en" in x and "conformer_transducer_large" in x, SUPPORTED_MODEL_NAMES))

model_dict = {}
for model_name in SUPPORTED_MODEL_NAMES:
    try:
        iface = gr.Interface.load(f'models/{model_name}')
        model_dict[model_name] = iface

        # model_dict[model_name] = None
    except:
        pass

if DEFAULT_EN_MODEL in model_dict:
    # Preemptively load the default EN model
    if model_dict[DEFAULT_EN_MODEL] is None:
        model_dict[DEFAULT_EN_MODEL] = gr.Interface.load(f'models/{DEFAULT_EN_MODEL}')

SUPPORTED_LANG_MODEL_DICT = {}
for lang in SUPPORTED_LANGUAGES:
    for model_id in SUPPORTED_MODEL_NAMES:
        if ("_" + lang + "_") in model_id:
            # create new lang in dict
            if lang not in SUPPORTED_LANG_MODEL_DICT:
                SUPPORTED_LANG_MODEL_DICT[lang] = [model_id]
            else:
                SUPPORTED_LANG_MODEL_DICT[lang].append(model_id)

# Sort model names
for lang in SUPPORTED_LANG_MODEL_DICT.keys():
    model_ids = SUPPORTED_LANG_MODEL_DICT[lang]
    model_ids = sorted(model_ids)
    SUPPORTED_LANG_MODEL_DICT[lang] = model_ids


def get_device():
    gpu_available = torch.cuda.is_available()
    if gpu_available:
        return torch.cuda.get_device_name()
    else:
        return "CPU"


def parse_duration(audio_file):
    """
    FFMPEG to calculate durations. Libraries can do it too, but filetypes cause different libraries to behave differently.
    """
    process = subprocess.Popen(['ffmpeg', '-i', audio_file], stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
    stdout, stderr = process.communicate()
    matches = re.search(
        r"Duration:\s{1}(?P<hours>\d+?):(?P<minutes>\d+?):(?P<seconds>\d+\.\d+?),", stdout.decode(), re.DOTALL
    ).groupdict()

    duration = 0.0
    duration += float(matches['hours']) * 60.0 * 60.0
    duration += float(matches['minutes']) * 60.0
    duration += float(matches['seconds']) * 1.0
    return duration


def resolve_model_type(model_name: str) -> str:
    """
    Map model name to a class type, without loading the model. Has some hardcoded assumptions in
    semantics of model naming.
    """
    # Loss specific maps
    if 'hybrid' in model_name or 'hybrid_ctc' in model_name or 'hybrid_transducer' in model_name:
        return 'hybrid'
    elif 'transducer' in model_name or 'rnnt' in model_id:
        return 'transducer'
    elif 'ctc' in model_name:
        return 'ctc'

    # Model specific maps
    if 'jasper' in model_name:
        return 'ctc'
    elif 'quartznet' in model_name:
        return 'ctc'
    elif 'citrinet' in model_name:
        return 'ctc'
    elif 'contextnet' in model_name:
        return 'transducer'

    return None


def resolve_model_stride(model_name) -> int:
    """
    Model specific pre-calc of stride levels.
    Dont laod model to get such info.
    """
    if 'jasper' in model_name:
        return 2
    if 'quartznet' in model_name:
        return 2
    if 'conformer' in model_name:
        return 4
    if 'squeezeformer' in model_name:
        return 4
    if 'citrinet' in model_name:
        return 8
    if 'contextnet' in model_name:
        return 8

    return -1


def convert_audio(audio_filepath):
    """
    Transcode all mp3 files to monochannel 16 kHz wav files.
    """
    filedir = os.path.split(audio_filepath)[0]
    filename, ext = os.path.splitext(audio_filepath)

    if ext == 'wav':
        return audio_filepath

    out_filename = os.path.join(filedir, filename + '.wav')

    process = subprocess.Popen(
        ['ffmpeg', '-y', '-i', audio_filepath, '-ac', '1', '-ar', str(SAMPLE_RATE), out_filename],
        stdout=subprocess.PIPE,
        stderr=subprocess.STDOUT,
        close_fds=True,
    )

    stdout, stderr = process.communicate()

    if os.path.exists(out_filename):
        return out_filename
    else:
        return None


def extract_result_from_manifest(filepath, model_name) -> (bool, str):
    """
    Parse the written manifest which is result of the buffered inference process.
    """
    data = []
    with open(filepath, 'r', encoding='utf-8') as f:
        for line in f:
            try:
                line = json.loads(line)
                data.append(line['pred_text'])
            except Exception as e:
                pass

    if len(data) > 0:
        return True, data[0]
    else:
        return False, f"Could not perform inference on model with name : {model_name}"


def build_html_output(s: str, style: str = "result_item_success"):
    return f"""
    <div class='result'>
        <div class='result_item {style}'>
          {s}
        </div>
    </div>
    """


def infer_audio(model_name: str, audio_file: str) -> str:
    """
    Main method that switches from HF inference for small audio files to Buffered CTC/RNNT mode for long audio files.

    Args:
        model_name: Str name of the model (potentially with / to denote HF models)
        audio_file: Path to an audio file (mp3 or wav)

    Returns:
        str which is the transcription if successful.
        str which is HTML output of logs.
    """
    # Parse the duration of the audio file
    duration = parse_duration(audio_file)

    if duration > BUFFERED_INFERENCE_DURATION_THRESHOLD:  # Longer than one minute; use buffered mode
        # Process audio to be of wav type (possible youtube audio)
        audio_file = convert_audio(audio_file)

        # If audio file transcoding failed, let user know
        if audio_file is None:
            return "Error:- Failed to convert audio file to wav."

        # Extract audio dir from resolved audio filepath
        audio_dir = os.path.split(audio_file)[0]

        # Next calculate the stride of each model
        model_stride = resolve_model_stride(model_name)

        if model_stride < 0:
            return f"Error:- Failed to compute the model stride for model with name : {model_name}"

        # Process model type (CTC/RNNT/Hybrid)
        model_type = resolve_model_type(model_name)

        if model_type is None:

            # Model type could not be infered.
            # Try all feasible options
            RESULT = None

            try:
                ctc_config = buffered_ctc.TranscriptionConfig(
                    pretrained_name=model_name,
                    audio_dir=audio_dir,
                    output_filename="output.json",
                    audio_type="wav",
                    overwrite_transcripts=True,
                    model_stride=model_stride,
                    chunk_len_in_secs=20.0,
                    total_buffer_in_secs=30.0,
                )

                buffered_ctc.main(ctc_config)
                result = extract_result_from_manifest('output.json', model_name)
                if result[0]:
                    RESULT = result[1]

            except Exception as e:
                pass

            try:
                rnnt_config = buffered_rnnt.TranscriptionConfig(
                    pretrained_name=model_name,
                    audio_dir=audio_dir,
                    output_filename="output.json",
                    audio_type="wav",
                    overwrite_transcripts=True,
                    model_stride=model_stride,
                    chunk_len_in_secs=20.0,
                    total_buffer_in_secs=30.0,
                )

                buffered_rnnt.main(rnnt_config)
                result = extract_result_from_manifest('output.json', model_name)[-1]

                if result[0]:
                    RESULT = result[1]
            except Exception as e:
                pass

            if RESULT is None:
                return f"Error:- Could not parse model type; failed to perform inference with model {model_name}!"

        elif model_type == 'ctc':

            # CTC Buffered Inference
            ctc_config = buffered_ctc.TranscriptionConfig(
                pretrained_name=model_name,
                audio_dir=audio_dir,
                output_filename="output.json",
                audio_type="wav",
                overwrite_transcripts=True,
                model_stride=model_stride,
                chunk_len_in_secs=20.0,
                total_buffer_in_secs=30.0,
            )

            buffered_ctc.main(ctc_config)
            return extract_result_from_manifest('output.json', model_name)[-1]

        elif model_type == 'transducer':

            # RNNT Buffered Inference
            rnnt_config = buffered_rnnt.TranscriptionConfig(
                pretrained_name=model_name,
                audio_dir=audio_dir,
                output_filename="output.json",
                audio_type="wav",
                overwrite_transcripts=True,
                model_stride=model_stride,
                chunk_len_in_secs=20.0,
                total_buffer_in_secs=30.0,
            )

            buffered_rnnt.main(rnnt_config)
            return extract_result_from_manifest('output.json', model_name)[-1]

        else:
            return f"Error:- Could not parse model type; failed to perform inference with model {model_name}!"

    else:
        # Obtain Gradio Model function from cache of models
        if model_name in model_dict:
            model = model_dict[model_name]

            if model is None:
                # Load the gradio interface
                # try:
                iface = gr.Interface.load(f'models/{model_name}')
                print(iface)
                # except:
                #     iface = None

                if iface is not None:
                    # Update model cache
                    model_dict[model_name] = iface
        else:
            model = None

        if model is not None:
            # Use HF API for transcription
            try:
                transcriptions = model(audio_file)
                return transcriptions
            except Exception as e:
                transcriptions = ""
                error = ""

                error += (
                    f"The model `{model_name}` is currently loading and cannot be used "
                    f"for transcription.<br>"
                    f"Please try another model or wait a few minutes."
                )

                return error

        else:
            error = (
                f"Error:- Could not find model {model_name} in list of available models : "
                f"{list([k for k in model_dict.keys()])}"
            )
            return error


def transcribe(microphone, audio_file, model_name):

    audio_data = None
    warn_output = ""
    if (microphone is not None) and (audio_file is not None):
        warn_output = (
            "WARNING: You've uploaded an audio file and used the microphone. "
            "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        )
        audio_data = microphone

    elif (microphone is None) and (audio_file is None):
        warn_output = "ERROR: You have to either use the microphone or upload an audio file"

    elif microphone is not None:
        audio_data = microphone
    else:
        audio_data = audio_file

    if audio_data is not None:
        audio_duration = parse_duration(audio_data)
    else:
        audio_duration = None

    time_diff = None
    try:
        with tempfile.TemporaryDirectory() as tempdir:
            filename = os.path.split(audio_data)[-1]
            new_audio_data = os.path.join(tempdir, filename)
            shutil.copy2(audio_data, new_audio_data)

            if os.path.exists(audio_data):
                os.remove(audio_data)

            audio_data = new_audio_data

            # Use HF API for transcription
            start = time.time()
            transcriptions = infer_audio(model_name, audio_data)
            end = time.time()
            time_diff = end - start

    except Exception as e:
        transcriptions = ""
        warn_output = warn_output

        if warn_output != "":
            warn_output += "<br><br>"

        warn_output += (
            f"The model `{model_name}` is currently loading and cannot be used "
            f"for transcription.<br>"
            f"Please try another model or wait a few minutes."
        )

    # Built HTML output
    if warn_output != "":
        html_output = build_html_output(warn_output, style="result_item_error")
    else:
        if transcriptions.startswith("Error:-"):
            html_output = build_html_output(transcriptions, style="result_item_error")
        else:
            output = f"Successfully transcribed on {get_device()} ! <br>" f"Transcription Time : {time_diff: 0.3f} s"

            if audio_duration > BUFFERED_INFERENCE_DURATION_THRESHOLD:
                output += f""" <br><br>
                Note: Audio duration was {audio_duration: 0.3f} s, so model had to be downloaded, initialized, and then
                buffered inference was used. <br>
                """

            html_output = build_html_output(output)

    return transcriptions, html_output


def _return_yt_html_embed(yt_url):
    """ Obtained from https://huggingface.co/spaces/whisper-event/whisper-demo """
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str


def yt_transcribe(yt_url: str, model_name: str):
    """ Modified from https://huggingface.co/spaces/whisper-event/whisper-demo """
    if yt_url == "":
        text = ""
        html_embed_str = ""
        html_output = build_html_output(f"""
            Error:- No YouTube URL was provide !
            """, style='result_item_error')
        return text, html_embed_str, html_output

    yt = pt.YouTube(yt_url)
    html_embed_str = _return_yt_html_embed(yt_url)

    with tempfile.TemporaryDirectory() as tempdir:
        file_uuid = str(uuid.uuid4().hex)
        file_uuid = f"{tempdir}/{file_uuid}.mp3"

        # Download YT Audio temporarily
        download_time_start = time.time()

        stream = yt.streams.filter(only_audio=True)[0]
        stream.download(filename=file_uuid)

        download_time_end = time.time()

        # Get audio duration
        audio_duration = parse_duration(file_uuid)

        # Perform transcription
        infer_time_start = time.time()

        text = infer_audio(model_name, file_uuid)

        infer_time_end = time.time()

    if text.startswith("Error:-"):
        html_output = build_html_output(text, style='result_item_error')
    else:
        html_output = f"""
        Successfully transcribed on {get_device()} ! <br>
        Audio Download Time : {download_time_end - download_time_start: 0.3f} s <br>
        Transcription Time : {infer_time_end - infer_time_start: 0.3f} s <br> 
        """

        if audio_duration > BUFFERED_INFERENCE_DURATION_THRESHOLD:
            html_output += f""" <br>
            Note: Audio duration was {audio_duration: 0.3f} s, so model had to be downloaded, initialized, and then
            buffered inference was used. <br>
            """

        html_output = build_html_output(html_output)

    return text, html_embed_str, html_output


def create_lang_selector_component(default_en_model=DEFAULT_EN_MODEL):
    """
    Utility function to select a langauge from a dropdown menu, and simultanously update another dropdown
    containing the corresponding model checkpoints for that language.

    Args:
        default_en_model: str name of a default english model that should be the set default.

    Returns:
        Gradio components for lang_selector (Dropdown menu) and models_in_lang (Dropdown menu)
    """
    lang_selector = gr.components.Dropdown(
        choices=sorted(list(SUPPORTED_LANGUAGES)), value="en", type="value", label="Languages", interactive=True,
    )
    models_in_lang = gr.components.Dropdown(
        choices=sorted(list(SUPPORTED_LANG_MODEL_DICT["en"])),
        value=default_en_model,
        label="Models",
        interactive=True,
    )

    def update_models_with_lang(lang):
        models_names = sorted(list(SUPPORTED_LANG_MODEL_DICT[lang]))
        default = models_names[0]

        if lang == 'en':
            default = default_en_model
        return models_in_lang.update(choices=models_names, value=default)

    lang_selector.change(update_models_with_lang, inputs=[lang_selector], outputs=[models_in_lang])

    return lang_selector, models_in_lang


"""
Define the GUI
"""
demo = gr.Blocks(title=TITLE, css=CSS)

with demo:
    header = gr.Markdown(MARKDOWN)

    with gr.Tab("Transcribe Audio"):
        with gr.Row() as row:
            file_upload = gr.components.Audio(source="upload", type='filepath', label='Upload File')
            microphone = gr.components.Audio(source="microphone", type='filepath', label='Microphone')

        lang_selector, models_in_lang = create_lang_selector_component()

        run = gr.components.Button('Transcribe')

        transcript = gr.components.Label(label='Transcript')
        audio_html_output = gr.components.HTML()

        run.click(
            transcribe, inputs=[microphone, file_upload, models_in_lang], outputs=[transcript, audio_html_output]
        )

    with gr.Tab("Transcribe Youtube"):
        yt_url = gr.components.Textbox(
            lines=1, label="Youtube URL", placeholder="Paste the URL to a YouTube video here"
        )

        lang_selector_yt, models_in_lang_yt = create_lang_selector_component(
            default_en_model=DEFAULT_BUFFERED_EN_MODEL
        )

        with gr.Row():
            run = gr.components.Button('Transcribe YouTube')
            embedded_video = gr.components.HTML()

        transcript = gr.components.Label(label='Transcript')
        yt_html_output = gr.components.HTML()

        run.click(
            yt_transcribe, inputs=[yt_url, models_in_lang_yt], outputs=[transcript, embedded_video, yt_html_output]
        )

    gr.components.HTML(ARTICLE)

demo.queue(concurrency_count=1)
demo.launch(enable_queue=True)