Spaces:
Runtime error
Runtime error
File size: 9,801 Bytes
d76d8fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Script to perform buffered inference using RNNT models.
Buffered inference is the primary form of audio transcription when the audio segment is longer than 20-30 seconds.
This is especially useful for models such as Conformers, which have quadratic time and memory scaling with
audio duration.
The difference between streaming and buffered inference is the chunk size (or the latency of inference).
Buffered inference will use large chunk sizes (5-10 seconds) + some additional buffer for context.
Streaming inference will use small chunk sizes (0.1 to 0.25 seconds) + some additional buffer for context.
# Middle Token merge algorithm
python speech_to_text_buffered_infer_rnnt.py \
model_path=null \
pretrained_name=null \
audio_dir="<remove or path to folder of audio files>" \
dataset_manifest="<remove or path to manifest>" \
output_filename="<remove or specify output filename>" \
total_buffer_in_secs=4.0 \
chunk_len_in_secs=1.6 \
model_stride=4 \
batch_size=32
# Longer Common Subsequence (LCS) Merge algorithm
python speech_to_text_buffered_infer_rnnt.py \
model_path=null \
pretrained_name=null \
audio_dir="<remove or path to folder of audio files>" \
dataset_manifest="<remove or path to manifest>" \
output_filename="<remove or specify output filename>" \
total_buffer_in_secs=4.0 \
chunk_len_in_secs=1.6 \
model_stride=4 \
batch_size=32 \
merge_algo="lcs" \
lcs_alignment_dir=<OPTIONAL: Some path to store the LCS alignments>
# NOTE:
You can use `DEBUG=1 python speech_to_text_buffered_infer_ctc.py ...` to print out the
predictions of the model, and ground-truth text if presents in manifest.
"""
import copy
import glob
import math
import os
from dataclasses import dataclass, is_dataclass
from typing import Optional
import torch
from omegaconf import OmegaConf, open_dict
from nemo.collections.asr.parts.utils.streaming_utils import (
BatchedFrameASRRNNT,
LongestCommonSubsequenceBatchedFrameASRRNNT,
)
from nemo.collections.asr.parts.utils.transcribe_utils import (
compute_output_filename,
get_buffered_pred_feat_rnnt,
setup_model,
write_transcription,
)
from nemo.core.config import hydra_runner
from nemo.utils import logging
can_gpu = torch.cuda.is_available()
@dataclass
class TranscriptionConfig:
# Required configs
model_path: Optional[str] = None # Path to a .nemo file
pretrained_name: Optional[str] = None # Name of a pretrained model
audio_dir: Optional[str] = None # Path to a directory which contains audio files
dataset_manifest: Optional[str] = None # Path to dataset's JSON manifest
# General configs
output_filename: Optional[str] = None
batch_size: int = 32
num_workers: int = 0
append_pred: bool = False # Sets mode of work, if True it will add new field transcriptions.
pred_name_postfix: Optional[str] = None # If you need to use another model name, rather than standard one.
# Chunked configs
chunk_len_in_secs: float = 1.6 # Chunk length in seconds
total_buffer_in_secs: float = 4.0 # Length of buffer (chunk + left and right padding) in seconds
model_stride: int = 8 # Model downsampling factor, 8 for Citrinet models and 4 for Conformer models",
# Set `cuda` to int to define CUDA device. If 'None', will look for CUDA
# device anyway, and do inference on CPU only if CUDA device is not found.
# If `cuda` is a negative number, inference will be on CPU only.
cuda: Optional[int] = None
audio_type: str = "wav"
# Recompute model transcription, even if the output folder exists with scores.
overwrite_transcripts: bool = True
# Decoding configs
max_steps_per_timestep: int = 5 #'Maximum number of tokens decoded per acoustic timestep'
stateful_decoding: bool = False # Whether to perform stateful decoding
# Merge algorithm for transducers
merge_algo: Optional[str] = 'middle' # choices=['middle', 'lcs'], choice of algorithm to apply during inference.
lcs_alignment_dir: Optional[str] = None # Path to a directory to store LCS algo alignments
@hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig)
def main(cfg: TranscriptionConfig) -> TranscriptionConfig:
logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
torch.set_grad_enabled(False)
if is_dataclass(cfg):
cfg = OmegaConf.structured(cfg)
if cfg.model_path is None and cfg.pretrained_name is None:
raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
if cfg.audio_dir is None and cfg.dataset_manifest is None:
raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")
filepaths = None
manifest = cfg.dataset_manifest
if cfg.audio_dir is not None:
filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"**/*.{cfg.audio_type}"), recursive=True))
manifest = None # ignore dataset_manifest if audio_dir and dataset_manifest both presents
# setup GPU
if cfg.cuda is None:
if torch.cuda.is_available():
device = [0] # use 0th CUDA device
accelerator = 'gpu'
else:
device = 1
accelerator = 'cpu'
else:
device = [cfg.cuda]
accelerator = 'gpu'
map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu')
logging.info(f"Inference will be done on device : {device}")
asr_model, model_name = setup_model(cfg, map_location)
model_cfg = copy.deepcopy(asr_model._cfg)
OmegaConf.set_struct(model_cfg.preprocessor, False)
# some changes for streaming scenario
model_cfg.preprocessor.dither = 0.0
model_cfg.preprocessor.pad_to = 0
if model_cfg.preprocessor.normalize != "per_feature":
logging.error("Only EncDecRNNTBPEModel models trained with per_feature normalization are supported currently")
# Disable config overwriting
OmegaConf.set_struct(model_cfg.preprocessor, True)
# Compute output filename
cfg = compute_output_filename(cfg, model_name)
# if transcripts should not be overwritten, and already exists, skip re-transcription step and return
if not cfg.overwrite_transcripts and os.path.exists(cfg.output_filename):
logging.info(
f"Previous transcripts found at {cfg.output_filename}, and flag `overwrite_transcripts`"
f"is {cfg.overwrite_transcripts}. Returning without re-transcribing text."
)
return cfg
asr_model.freeze()
asr_model = asr_model.to(asr_model.device)
# Change Decoding Config
decoding_cfg = asr_model.cfg.decoding
with open_dict(decoding_cfg):
if cfg.stateful_decoding:
decoding_cfg.strategy = "greedy"
else:
decoding_cfg.strategy = "greedy_batch"
decoding_cfg.preserve_alignments = True # required to compute the middle token for transducers.
decoding_cfg.fused_batch_size = -1 # temporarily stop fused batch during inference.
asr_model.change_decoding_strategy(decoding_cfg)
feature_stride = model_cfg.preprocessor['window_stride']
model_stride_in_secs = feature_stride * cfg.model_stride
total_buffer = cfg.total_buffer_in_secs
chunk_len = float(cfg.chunk_len_in_secs)
tokens_per_chunk = math.ceil(chunk_len / model_stride_in_secs)
mid_delay = math.ceil((chunk_len + (total_buffer - chunk_len) / 2) / model_stride_in_secs)
logging.info(f"tokens_per_chunk is {tokens_per_chunk}, mid_delay is {mid_delay}")
if cfg.merge_algo == 'middle':
frame_asr = BatchedFrameASRRNNT(
asr_model=asr_model,
frame_len=chunk_len,
total_buffer=cfg.total_buffer_in_secs,
batch_size=cfg.batch_size,
max_steps_per_timestep=cfg.max_steps_per_timestep,
stateful_decoding=cfg.stateful_decoding,
)
elif cfg.merge_algo == 'lcs':
frame_asr = LongestCommonSubsequenceBatchedFrameASRRNNT(
asr_model=asr_model,
frame_len=chunk_len,
total_buffer=cfg.total_buffer_in_secs,
batch_size=cfg.batch_size,
max_steps_per_timestep=cfg.max_steps_per_timestep,
stateful_decoding=cfg.stateful_decoding,
alignment_basepath=cfg.lcs_alignment_dir,
)
# Set the LCS algorithm delay.
frame_asr.lcs_delay = math.floor(((total_buffer - chunk_len)) / model_stride_in_secs)
else:
raise ValueError("Invalid choice of merge algorithm for transducer buffered inference.")
hyps = get_buffered_pred_feat_rnnt(
asr=frame_asr,
tokens_per_chunk=tokens_per_chunk,
delay=mid_delay,
model_stride_in_secs=model_stride_in_secs,
batch_size=cfg.batch_size,
manifest=manifest,
filepaths=filepaths,
)
output_filename = write_transcription(hyps, cfg, model_name, filepaths=filepaths, compute_langs=False)
logging.info(f"Finished writing predictions to {output_filename}!")
return cfg
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter
|