Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,27 +5,14 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
5 |
from langchain.llms import HuggingFacePipeline
|
6 |
from huggingface_hub import login
|
7 |
from pydantic import BaseModel, model_validator
|
8 |
-
from transformers import AutoConfig # Importar para configurar el modelo
|
9 |
|
10 |
# Token secreto de Hugging Face
|
11 |
huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
|
12 |
login(huggingface_token)
|
13 |
|
14 |
-
#
|
15 |
-
rope_scaling = {
|
16 |
-
"type": "linear", # Aseg煤rate de que sea el tipo correcto requerido por tu modelo
|
17 |
-
"factor": 8.0 # Factor de escalado
|
18 |
-
}
|
19 |
-
|
20 |
-
|
21 |
-
# Cargar manualmente el modelo Llama 3.1 con la configuraci贸n ajustada
|
22 |
model_name = "meta-llama/llama-3.1-8b-instruct"
|
23 |
-
|
24 |
-
# Configurar el modelo con rope_scaling
|
25 |
-
config = AutoConfig.from_pretrained(model_name)
|
26 |
-
config.rope_scaling = rope_scaling # Aqu铆 aplicas la configuraci贸n
|
27 |
-
|
28 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
29 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
|
31 |
# Usar transformers pipeline para cargar el modelo y tokenizer
|
@@ -78,4 +65,3 @@ if query:
|
|
78 |
st.success("Consulta v谩lida.")
|
79 |
except ValueError as e:
|
80 |
st.error(f"Error de validaci贸n: {e}")
|
81 |
-
|
|
|
5 |
from langchain.llms import HuggingFacePipeline
|
6 |
from huggingface_hub import login
|
7 |
from pydantic import BaseModel, model_validator
|
|
|
8 |
|
9 |
# Token secreto de Hugging Face
|
10 |
huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
|
11 |
login(huggingface_token)
|
12 |
|
13 |
+
# Cargar el modelo Llama 3.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
model_name = "meta-llama/llama-3.1-8b-instruct"
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
|
18 |
# Usar transformers pipeline para cargar el modelo y tokenizer
|
|
|
65 |
st.success("Consulta v谩lida.")
|
66 |
except ValueError as e:
|
67 |
st.error(f"Error de validaci贸n: {e}")
|
|