JaphetHernandez commited on
Commit
8517578
verified
1 Parent(s): 876fe89

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -16
app.py CHANGED
@@ -5,27 +5,14 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
5
  from langchain.llms import HuggingFacePipeline
6
  from huggingface_hub import login
7
  from pydantic import BaseModel, model_validator
8
- from transformers import AutoConfig # Importar para configurar el modelo
9
 
10
  # Token secreto de Hugging Face
11
  huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
12
  login(huggingface_token)
13
 
14
- # Definir la configuraci贸n de rope_scaling
15
- rope_scaling = {
16
- "type": "linear", # Aseg煤rate de que sea el tipo correcto requerido por tu modelo
17
- "factor": 8.0 # Factor de escalado
18
- }
19
-
20
-
21
- # Cargar manualmente el modelo Llama 3.1 con la configuraci贸n ajustada
22
  model_name = "meta-llama/llama-3.1-8b-instruct"
23
-
24
- # Configurar el modelo con rope_scaling
25
- config = AutoConfig.from_pretrained(model_name)
26
- config.rope_scaling = rope_scaling # Aqu铆 aplicas la configuraci贸n
27
-
28
- model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
29
  tokenizer = AutoTokenizer.from_pretrained(model_name)
30
 
31
  # Usar transformers pipeline para cargar el modelo y tokenizer
@@ -78,4 +65,3 @@ if query:
78
  st.success("Consulta v谩lida.")
79
  except ValueError as e:
80
  st.error(f"Error de validaci贸n: {e}")
81
-
 
5
  from langchain.llms import HuggingFacePipeline
6
  from huggingface_hub import login
7
  from pydantic import BaseModel, model_validator
 
8
 
9
  # Token secreto de Hugging Face
10
  huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
11
  login(huggingface_token)
12
 
13
+ # Cargar el modelo Llama 3.1
 
 
 
 
 
 
 
14
  model_name = "meta-llama/llama-3.1-8b-instruct"
15
+ model = AutoModelForCausalLM.from_pretrained(model_name)
 
 
 
 
 
16
  tokenizer = AutoTokenizer.from_pretrained(model_name)
17
 
18
  # Usar transformers pipeline para cargar el modelo y tokenizer
 
65
  st.success("Consulta v谩lida.")
66
  except ValueError as e:
67
  st.error(f"Error de validaci贸n: {e}")