Prueba_1 / app.py
JaphetHernandez's picture
Update app.py
7c93cc3 verified
raw
history blame
9.34 kB
import pandas as pd
import streamlit as st
from langchain_huggingface import HuggingFacePipeline
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
from huggingface_hub import login
import torch
import json
import os
from datetime import datetime
# Configurar variable de entorno para evitar la fragmentaci贸n de memoria en CUDA
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# Autenticaci贸n con Fireworks en Hugging Face
huggingface_token = st.secrets["FIREWORKS"]
login(huggingface_token)
# Configurar modelo Fireworks con cuantizaci贸n int8 y offload en la CPU
quant_config = BitsAndBytesConfig(
load_in_8bit=True, # Activar la carga en int8
llm_int8_enable_fp32_cpu_offload=True, # Permitir offload en la CPU
quantization_scheme="gptq" # Especificar el esquema GPTQ
)
model_id = "fireworks-ai/firefunction-v2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto", # Permitir offloading autom谩tico entre CPU y GPU
torch_dtype=torch.float16,
quantization_config=quant_config
)
# Establecer el token de relleno
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
# Crear pipeline para generaci贸n de texto con Fireworks
fireworks_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=20 # Reducir max_new_tokens para minimizar el uso de memoria
)
# Adaptar el pipeline a LangChain
llm_pipeline = HuggingFacePipeline(pipeline=fireworks_pipeline)
# Interfaz de Streamlit
st.title("Cosine Similarity Calculation with Fireworks, LangChain, and Llama 3.1")
# Subir archivo CSV
uploaded_file = st.file_uploader("Sube un archivo CSV con la columna 'job_title':", type=["csv"])
if uploaded_file is not None:
# Cargar el CSV en un DataFrame
df = pd.read_csv(uploaded_file)
if 'job_title' in df.columns:
query = 'aspiring human resources specialist'
job_titles = df['job_title'].tolist()
# Procesar en lotes para optimizaci贸n
batch_size = 4 # Reducir batch size para minimizar el uso de memoria
job_titles_batches = [job_titles[i:i+batch_size] for i in range(0, len(job_titles), batch_size)]
# Definir el prompt para Fireworks con formato de funci贸n
prompt_template = PromptTemplate(
template=(
"Function: calculate_cosine_similarity\n"
"Description: Calculate the cosine similarity between the given query and job titles.\n"
"Parameters:\n"
" - query: The query string to compare.\n"
" - job_titles: A list of job titles to compare against.\n"
"Input:\n"
" query: '{query}'\n"
" job_titles: {job_titles}\n"
"Output:\n"
" Return the results as 'Job Title: [Job Title], Score: [Cosine Similarity Score]'."
),
input_variables=["query", "job_titles"]
)
# Crear el LLMChain para manejar la interacci贸n con Fireworks
llm_chain = LLMChain(
llm=llm_pipeline,
prompt=prompt_template
)
# Ejecutar la generaci贸n con Fireworks y funciones
if st.button("Calcular Similitud de Coseno"):
with st.spinner("Calculando similitudes con Fireworks..."):
all_scores = []
try:
for batch in job_titles_batches:
# Tokenizar la entrada y mover los tensores a CUDA
model_inputs = tokenizer(
batch,
return_tensors="pt",
padding=True,
truncation=True
).to("cuda") # Mover solo los tensores de entrada a CUDA
with torch.cuda.amp.autocast(): # Usar Mixed Precision
model_inputs['attention_mask'] = (model_inputs['input_ids'] != tokenizer.pad_token_id).int().to("cuda")
generated_ids = model.generate(
**model_inputs,
max_new_tokens=20, # Reducir para minimizar el uso de memoria
num_beams=1 # Desactivar b煤squeda en beam para m谩s velocidad
)
# Decodificar el resultado y a帽adirlo a la lista de resultados
decoded = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
all_scores.extend([0.95] * len(batch)) # Simulaci贸n para demostraci贸n
# Liberar memoria despu茅s de cada batch
del model_inputs, generated_ids
torch.cuda.empty_cache()
# Asignar puntajes al DataFrame
df['Score'] = all_scores
# Mostrar el dataframe actualizado
st.write("DataFrame con los puntajes de similitud:")
st.write(df)
except Exception as e:
st.error(f"Error durante la generaci贸n: {e}")
else:
st.error("La columna 'job_title' no se encuentra en el archivo CSV.")
'''
import pandas as pd
import streamlit as st
from langchain.llms import HuggingFacePipeline
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import login
import torch
# API Key de Hugging Face
huggingface_token = st.secrets["FIREWORKS"]
login(huggingface_token)# Autenticar
#login(api_key)
# Configurar modelo Llama 3.1
model_id = "meta-llama/Llama-3.2-1B"
tokenizer = AutoTokenizer.from_pretrained(model_id, truncation=True)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.float16)
# Crear pipeline con Fireworks
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=50) #, max_length=1024)
llm_pipeline = HuggingFacePipeline(pipeline=pipe)
# Interfaz de Streamlit
st.title("Cosine Similarity Calculation with Fireworks, LangChain, and Llama 3.1")
# Subir archivo CSV
uploaded_file = st.file_uploader("Sube un archivo CSV con la columna 'job_title':", type=["csv"])
if uploaded_file is not None:
# Cargar el CSV en un DataFrame
df = pd.read_csv(uploaded_file)
print(df)
if 'job_title' in df.columns:
query = 'aspiring human resources specialist'
job_titles = df['job_title'].tolist()
# Definir el prompt para usar Fireworks para c谩lculo de similitud de coseno
# Crear el prompt mejorado para Fireworks
prompt_template = PromptTemplate(
template=(
"You are an AI model with access to external embeddings services. Your task is to calculate the cosine similarity "
"between a given query and a list of job titles using embeddings obtained from an external service. "
"Follow these steps to complete the task:\n\n"
"1. Retrieve the embeddings for the query: '{query}' from the external embeddings service.\n"
"2. For each job title in the list below, retrieve the corresponding embeddings from the same external service.\n"
"3. Calculate the cosine similarity between the query embeddings and the embeddings of each job title.\n"
"4. Return the results in the following format:\n"
" - Job Title: [Job Title], Score: [Cosine Similarity Score]\n"
" - Job Title: [Job Title], Score: [Cosine Similarity Score]\n"
" ...\n\n"
"The list of job titles is:\n{job_titles}\n\n"
"Remember to access the embeddings service directly and ensure that the cosine similarity scores are calculated accurately based on the semantic similarity between the embeddings."
),
input_variables=["query", "job_titles"]
)
# Crear el LLMChain para manejar la interacci贸n con Fireworks
llm_chain = LLMChain(
llm=llm_pipeline,
prompt=prompt_template
)
# Ejecutar la generaci贸n con el LLM
if st.button("Calcular Similitud de Coseno"):
with st.spinner("Calculando similitudes con Fireworks y Llama 3.1..."):
try:
result = llm_chain.run({"query": query, "job_titles": job_titles})
st.write("Respuesta del modelo:")
st.write(result)
# Simular la asignaci贸n de puntajes en la columna 'Score' (basado en la respuesta del modelo)
df['Score'] = [0.95] * len(df) # Simulaci贸n para la demostraci贸n
# Mostrar el dataframe actualizado
st.write("DataFrame con los puntajes de similitud:")
st.write(df)
except Exception as e:
st.error(f"Error durante la generaci贸n: {e}")
else:
st.error("La columna 'job_title' no se encuentra en el archivo CSV.")
'''