Spaces:
Sleeping
Sleeping
File size: 11,210 Bytes
75309ed 49bd427 75309ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import os
import asyncio
import re
import chainlit as cl
from typing import Dict, Any
from langgraph.graph import StateGraph
from langgraph.checkpoint.memory import MemorySaver
from typing import Union
from chainlit.input_widget import Select
from agents.jar3d_agent import (State,
Jar3d,
MetaExpert,
Router,
NoToolExpert,
ToolExpert,
set_chat_finished,
routing_function,
)
from agents.base_agent import BaseAgent
from utils.read_markdown import read_markdown_file
from config.load_configs import load_config
config_path = os.path.join(os.path.dirname(__file__), '..', 'config', 'config.yaml')
load_config(config_path)
server = os.environ.get("LLM_SERVER")
recursion_limit = int(os.environ.get("RECURSION_LIMIT"))
def get_agent_kwargs(server: str = "claude", location: str = None, hybrid: bool = False) -> Dict[str, Any]:
if not location:
location = "us"
else:
location = location
if server == "openai":
agent_kwargs = {
"model": "gpt-4o-mini",
"server": "openai",
"temperature": 0,
}
agent_kwargs_meta_expert = agent_kwargs.copy()
agent_kwargs_meta_expert["model"] = "o1-preview"
# Mistral
elif server == "mistral":
agent_kwargs = {
"model": "mistral-large-latest",
"server": "mistral",
"temperature": 0,
}
agent_kwargs_meta_expert = agent_kwargs.copy()
elif server == "claude":
agent_kwargs = {
"model": "claude-3-5-sonnet-20240620",
"server": "claude",
"temperature": 0,
}
agent_kwargs_meta_expert = agent_kwargs.copy()
elif server == "ollama":
agent_kwargs = {
"model": os.environ.get("OLLAMA_MODEL"),
"server": "ollama",
"temperature": 0.1,
}
agent_kwargs_meta_expert = agent_kwargs.copy()
elif server == "groq":
agent_kwargs = {
"model": "llama3-groq-70b-8192-tool-use-preview",
"server": "groq",
"temperature": 0,
}
agent_kwargs_meta_expert = agent_kwargs.copy()
# you must change the model and model_endpoint to the correct values
elif server == "vllm":
agent_kwargs = {
"model": "hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4",
"server": "vllm",
"temperature": 0.2,
"model_endpoint": "https://s1s4l1lhce486j-8000.proxy.runpod.net/",
}
agent_kwargs_meta_expert = agent_kwargs.copy()
agent_kwargs_tools = agent_kwargs.copy()
agent_kwargs_tools["location"] = location
agent_kwargs_tools["hybrid"] = hybrid
return agent_kwargs, agent_kwargs_tools, agent_kwargs_meta_expert
class Jar3dIntro(BaseAgent[State]):
def __init__(self, model: str = None, server: str = None, temperature: float = 0,
model_endpoint: str = None, stop: str = None):
super().__init__(model, server, temperature, model_endpoint, stop)
self.llm = self.get_llm(json_model=False)
def get_prompt(self, state) -> str:
system_prompt = read_markdown_file('prompt_engineering/jar3d_requirements_prompt.md')
return system_prompt
def process_response(self, response: Any, user_input: str = None, state: State = None) -> Dict[str, Union[str, dict]]:
user_input = "/start"
updates_conversation_history = {
"requirements_gathering": [
{"role": "user", "content": f"{user_input}"},
{"role": "assistant", "content": str(response)}
]
}
return updates_conversation_history
def get_conv_history(self, state: State) -> str:
pass
def get_user_input(self) -> str:
pass
def get_guided_json(self, state: State) -> Dict[str, Any]:
pass
def use_tool(self) -> Any:
pass
def run(self, state: State) -> State:
state = self.invoke(state=state, user_input="/start")
jar3d_intro = state["requirements_gathering"][-1]["content"]
jar3d_intro = re.sub(r'^```python[\s\S]*?```\s*', '', jar3d_intro, flags=re.MULTILINE)
jar3d_intro = jar3d_intro.lstrip()
return jar3d_intro
@cl.on_settings_update
async def update_settings(settings):
location = settings["location"]
location_dict = {
"The United States": "us",
"The United Kingdom": "gb",
"The Netherlands": "nl",
"Canada": "ca"
}
gl = location_dict.get(location, 'us')
cl.user_session.set("gl", gl)
retrieval_mode = settings["retrieval_mode"]
if retrieval_mode == "Hybrid (Graph + Dense)":
hybrid = True
else:
hybrid = False
cl.user_session.set("hybrid", hybrid)
agent_kwargs, agent_kwargs_tools, agent_kwargs_meta_expert = get_agent_kwargs(server, gl, hybrid)
cl.user_session.set("agent_kwargs", agent_kwargs)
cl.user_session.set("agent_kwargs_tools", agent_kwargs_tools)
cl.user_session.set("agent_kwargs_meta_expert", agent_kwargs_meta_expert)
workflow = build_workflow()
cl.user_session.set("workflow", workflow)
await cl.Message(content=f"I'll be conducting any Internet searches from {location} using {retrieval_mode}", author="Jar3dπ©βπ»").send()
@cl.on_chat_start
async def start():
state: State = {
"meta_prompt": [],
"conversation_history": [],
"requirements_gathering": [],
"expert_plan": [],
"expert_research": [],
"expert_research_shopping": [],
"expert_writing": [],
"user_input": [],
"previous_search_queries": [],
"router_decision": None,
"chat_limit": None,
"chat_finished": False,
"recursion_limit": None,
"final_answer": None,
"previous_type2_work": [],
"progress_tracking": None
}
cl.user_session.set("state", state)
await cl.ChatSettings(
[
Select(
id="location",
label="Select your location:",
values=[
"The United States",
"The United Kingdom",
"The Netherlands",
"Canada",
]
),
Select(
id="retrieval_mode",
label="Select retrieval mode:",
values=[
"Hybrid (Graph + Dense)",
"Dense Only",
],
initial_index=1,
description="The retrieval mode determines how Jar3d and searches and indexes information from the internet. Hybrid mode performs a deeper search but will cost more."
)
]
).send()
try:
gl = cl.user_session.get("gl")
hybrid = cl.user_session.get("hybrid")
except Exception as e:
gl = "us"
hybrid = False
agent_kwargs, agent_kwargs_tools, agent_kwargs_meta_expert = get_agent_kwargs(server, gl, hybrid)
cl.user_session.set("agent_kwargs", agent_kwargs)
cl.user_session.set("agent_kwargs_tools", agent_kwargs_tools)
cl.user_session.set("agent_kwargs_meta_expert", agent_kwargs_meta_expert)
workflow = build_workflow()
cl.user_session.set("workflow", workflow)
def initialise_jar3d():
jar3d_intro = Jar3dIntro(**agent_kwargs)
jar3d_intro_hi = jar3d_intro.run(state)
jar3d_agent = Jar3d(**agent_kwargs)
return jar3d_intro_hi, jar3d_agent
loop = asyncio.get_running_loop()
jar3d_intro_hi, jar3d_agent = await loop.run_in_executor(None, initialise_jar3d)
cl.user_session.set("jar3d_agent", jar3d_agent)
# Send an initial message to start the conversation
await cl.Message(content=f"{jar3d_intro_hi}.\n\n I'll be conducting any Internet searches from The United States with Dense Retrieval.", author="Jar3dπ©βπ»").send()
def build_workflow():
agent_kwargs = cl.user_session.get("agent_kwargs")
agent_kwargs_tools = cl.user_session.get("agent_kwargs_tools")
agent_kwargs_meta_expert = cl.user_session.get("agent_kwargs_meta_expert")
# Initialize agent instances
meta_expert_instance = MetaExpert(**agent_kwargs_meta_expert)
router_instance = Router(**agent_kwargs)
no_tool_expert_instance = NoToolExpert(**agent_kwargs)
tool_expert_instance = ToolExpert(**agent_kwargs_tools)
graph = StateGraph(State)
graph.add_node("meta_expert", lambda state: meta_expert_instance.run(state=state))
graph.add_node("router", lambda state: router_instance.run(state=state))
graph.add_node("no_tool_expert", lambda state: no_tool_expert_instance.run(state=state))
graph.add_node("tool_expert", lambda state: tool_expert_instance.run(state=state))
graph.add_node("end_chat", lambda state: set_chat_finished(state))
graph.set_entry_point("meta_expert")
graph.set_finish_point("end_chat")
graph.add_edge("meta_expert", "router")
graph.add_edge("tool_expert", "meta_expert")
graph.add_edge("no_tool_expert", "meta_expert")
graph.add_conditional_edges(
"router",
lambda state: routing_function(state),
)
checkpointer = MemorySaver()
workflow = graph.compile(checkpointer)
return workflow
def run_workflow(workflow, state):
state["recursion_limit"] = recursion_limit
state["user_input"] = "/start"
configs = {"recursion_limit": recursion_limit + 10, "configurable": {"thread_id": 42}}
for event in workflow.stream(state, configs):
pass
state = workflow.get_state(configs)
state = state.values
try:
final_answer = state["final_answer"]
except Exception as e:
print(f"Error extracting final answer: {e}")
final_answer = "The agent failed to deliver a final response. Please check the logs for more information."
return final_answer
@cl.on_message
async def main(message: cl.Message):
state: State = cl.user_session.get("state")
agent: Jar3d = cl.user_session.get("jar3d_agent")
workflow = cl.user_session.get("workflow")
# Running the synchronous function in a separate thread
loop = asyncio.get_running_loop()
state, response = await loop.run_in_executor(None, agent.run_chainlit, state, message)
# Display the response (requirements) immediately
await cl.Message(content=response, author="Jar3dπ©βπ»").send()
if message.content == "/end":
await cl.Message(content="This will take some time, probably a good time for a coffee break β...", author="System").send()
final_answer = await cl.make_async(run_workflow)(workflow, state)
if final_answer:
await cl.Message(content=final_answer, author="Jar3dπ©βπ»").send()
else:
await cl.Message(content="No final answer was produced.", author="Jar3dπ©βπ»").send()
else:
cl.user_session.set("state", state) # Update the state in the session
# if __name__ == "__main__":
# cl.run()
|