File size: 17,472 Bytes
41b582a
 
75309ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5132d94
75309ed
 
 
 
5132d94
 
 
75309ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b582a
75309ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b582a
75309ed
 
 
 
 
 
 
 
 
 
41b582a
 
 
75309ed
 
 
 
 
 
 
 
 
41b582a
75309ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b582a
 
49bd427
75309ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b582a
75309ed
 
 
 
 
 
 
 
 
 
 
 
41b582a
75309ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# Hybird RAG, combining "similarity search" & "knowledge graph"

import sys
import os
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.insert(0, root_dir)
import concurrent.futures
import functools
import numpy as np
import faiss
import traceback
import tempfile
from typing import Dict, List
from termcolor import colored
from langchain_anthropic import ChatAnthropic
from langchain_openai import ChatOpenAI
from langchain_community.graphs import Neo4jGraph
from langchain_experimental.graph_transformers.llm import LLMGraphTransformer
# from langchain_community.vectorstores.neo4j_vector import Neo4jVector
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from langchain_community.vectorstores import FAISS
from flashrank import Ranker, RerankRequest
from llmsherpa.readers import LayoutPDFReader
from langchain.schema import Document
from config.load_configs import load_config
from langchain_community.docstore.in_memory import InMemoryDocstore
from fake_useragent import UserAgent
from dotenv import load_dotenv

root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.insert(0, root_dir)

# config_path = os.path.join(os.path.dirname(__file__), '..', 'config', 'config.yaml')
# load_config(config_path)
load_dotenv()

ua = UserAgent()
os.environ["USER_AGENT"] = ua.random
os.environ["FAISS_OPT_LEVEL"] = "generic"


def timeout(max_timeout):
    """Timeout decorator, parameter in seconds."""
    def timeout_decorator(item):
        """Wrap the original function."""
        @functools.wraps(item)
        def func_wrapper(*args, **kwargs):
            """Closure for function."""
            with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
                future = executor.submit(item, *args, **kwargs)
                try:
                    return future.result(max_timeout)
                except concurrent.futures.TimeoutError:
                    return [Document(page_content=f"Timeout occurred while processing URL: {args[0]}", metadata={"source": args[0]})]
        return func_wrapper
    return timeout_decorator


# Change: Added function to deduplicate re-ranked results.
def deduplicate_results(results, rerank=True):
    seen = set()
    unique_results = []
    for result in results:
        # Create a tuple of the content and source to use as a unique identifier
        if rerank:
            identifier = (result['text'], result['meta'])
        else:
            # When not reranking, result is a tuple (doc, score)
            doc, score = result
            identifier = (doc.page_content, doc.metadata.get('source', ''))
        if identifier not in seen:
            seen.add(identifier)
            unique_results.append(result)
    return unique_results


def index_and_rank(corpus: List[Document], query: str, top_percent: float = 20, batch_size: int = 25) -> List[Dict[str, str]]:
    print(colored(f"\n\nStarting indexing and ranking with FastEmbeddings and FAISS for {len(corpus)} documents\n\n", "green"))
    CACHE_DIR = "/app/fastembed_cache"
    embeddings = FastEmbedEmbeddings(model_name='jinaai/jina-embeddings-v2-small-en', max_length=512, cache_dir=CACHE_DIR)

    print(colored("\n\nCreating FAISS index...\n\n", "green"))

    try:
        # Initialize an empty FAISS index
        index = None
        docstore = InMemoryDocstore({})
        index_to_docstore_id = {}

        # Process documents in batches
        for i in range(0, len(corpus), batch_size):
            batch = corpus[i:i+batch_size]
            texts = [doc.page_content for doc in batch]
            metadatas = [doc.metadata for doc in batch]

            print(f"Processing batch {i // batch_size + 1} with {len(texts)} documents")

            # Embed the batch
            batch_embeddings = embeddings.embed_documents(texts)

            # Convert embeddings to numpy array with float32 dtype
            batch_embeddings_np = np.array(batch_embeddings, dtype=np.float32)

            if index is None:
                # Create the index with the first batch
                index = faiss.IndexFlatIP(batch_embeddings_np.shape[1])
            
            # Normalize the embeddings
            faiss.normalize_L2(batch_embeddings_np)

            # Add embeddings to the index
            start_id = len(index_to_docstore_id)
            index.add(batch_embeddings_np)
            
            # Update docstore and index_to_docstore_id
            for j, (text, metadata) in enumerate(zip(texts, metadatas)):
                doc_id = f"{start_id + j}"
                docstore.add({doc_id: Document(page_content=text, metadata=metadata)})
                index_to_docstore_id[start_id + j] = doc_id

        print(f"Total documents indexed: {len(index_to_docstore_id)}")

        # Create a FAISS retriever
        retriever = FAISS(embeddings, index, docstore, index_to_docstore_id)

        # Perform the search
        k = min(40, len(corpus))  # Ensure we don't try to retrieve more documents than we have

        # Change: Retrieve documents based on query in metadata  
        similarity_cache = {}
        docs = []
        for doc in corpus:
            query = doc.metadata.get('query', '')
            # Check if we've already performed this search
            if query in similarity_cache:
                cached_results = similarity_cache[query]
                docs.extend(cached_results)
            else:
                # Perform the similarity search
                search_results = retriever.similarity_search_with_score(query, k=k)
                
                # Cache the results
                similarity_cache[query] = search_results
                
                # Add to docs
                docs.extend(search_results)

        docs = deduplicate_results(docs, rerank=False)

        print(colored(f"\n\nRetrieved {len(docs)} documents\n\n", "green"))
        
        passages = []
        for idx, (doc, score) in enumerate(docs, start=1):
            try:
                passage = {
                    "id": idx,
                    "text": doc.page_content,
                    "meta": doc.metadata.get("source", {"source": "unknown"}),
                    "score": float(score)  # Convert score to float
                }
                passages.append(passage)
            except Exception as e:
                print(colored(f"Error in creating passage: {str(e)}", "red"))
                traceback.print_exc()

        print(colored("\n\nRe-ranking documents...\n\n", "green"))
        # Change: reranker done based on query in metadata
        CACHE_DIR_RANKER = "/app/reranker_cache"
        ranker = Ranker(cache_dir=CACHE_DIR_RANKER)
        results = []
        processed_queries = set()

        # Perform reranking with query caching
        for doc in corpus:
            query = doc.metadata.get('query', '')
            
            # Skip if we've already processed this query
            if query in processed_queries:
                continue
            
            rerankrequest = RerankRequest(query=query, passages=passages)
            result = ranker.rerank(rerankrequest)
            results.extend(result)
            
            # Mark this query as processed
            processed_queries.add(query)

        results = deduplicate_results(results, rerank=True)

        print(colored(f"\n\nRe-ranking complete with {len(results)} documents\n\n", "green"))

        # Sort results by score in descending order
        sorted_results = sorted(results, key=lambda x: x['score'], reverse=True)

        # Calculate the number of results to return based on the percentage
        num_results = max(1, int(len(sorted_results) * (top_percent / 100)))
        top_results = sorted_results[:num_results]

        final_results = [
            {
                "text": result['text'],
                "meta": result['meta'],
                "score": result['score']
            }
            for result in top_results
        ]

        print(colored(f"\n\nReturned top {top_percent}% of results ({len(final_results)} documents)\n\n", "green"))

        # Add debug information about scores
        scores = [result['score'] for result in results]
        print(f"Score distribution: min={min(scores):.4f}, max={max(scores):.4f}, mean={np.mean(scores):.4f}, median={np.median(scores):.4f}")
        print(f"Unique scores: {len(set(scores))}")
        if final_results:
            print(f"Score range for top {top_percent}% results: {final_results[-1]['score']:.4f} to {final_results[0]['score']:.4f}")

    except Exception as e:
        print(colored(f"Error in indexing and ranking: {str(e)}", "red"))
        traceback.print_exc()
        final_results = [{"text": "Error in indexing and ranking", "meta": {"source": "unknown"}, "score": 0.0}]

    return final_results

def run_hybrid_graph_retrrieval(graph: Neo4jGraph = None, corpus: List[Document] = None, query: str = None, hybrid: bool = False):
    print(colored(f"\n\Initiating Retrieval...\n\n", "green"))

    if hybrid:
        print(colored("Running Hybrid Retrieval...", "yellow"))
        unstructured_data = index_and_rank(corpus, query)

        # We only feed > 30 to jar3d, subset
        query = f"""
        MATCH p = (n)-[r]->(m)
        WHERE COUNT {{(n)--()}} > 30
        RETURN p AS Path
        LIMIT 85
        """
        response = graph.query(query)
        retrieved_context = f"Important Relationships:{response}\n\n Additional Context:{unstructured_data}"

    else:
        print(colored("Running Dense Only Retrieval...", "yellow"))
        unstructured_data = index_and_rank(corpus, query)
        retrieved_context = f"Additional Context:{unstructured_data}"

    return retrieved_context


# The chunking process begins with the intelligent_chunking function, which takes a URL and a query as input parameters.
@timeout(20)  # Change: Takes url and query as input
def intelligent_chunking(url: str, query: str) -> List[Document]:
    try:
        print(colored(f"\n\nStarting Intelligent Chunking with LLM Sherpa for URL: {url}\n\n", "green"))
        llmsherpa_api_url = os.environ.get('LLM_SHERPA_SERVER')

        if not llmsherpa_api_url:
            raise ValueError("LLM_SHERPA_SERVER environment variable is not set")
        
        corpus = []
#The function utilizes LayoutPDFReader to read and extract text from the specified PDF document located at the given URL. 
#This is done by calling the LLM Sherpa API, which handles the PDF reading and layout analysis.
#
        try: 
            print(colored("Starting LLM Sherpa LayoutPDFReader...\n\n", "yellow"))
            reader = LayoutPDFReader(llmsherpa_api_url)
            doc = reader.read_pdf(url)
            print(colored("Finished LLM Sherpa LayoutPDFReader...\n\n", "yellow"))
        except Exception as e:
            print(colored(f"Error in LLM Sherpa LayoutPDFReader: {str(e)}", "red"))
            traceback.print_exc()
            doc = None
# Once the document is retrieved, it is processed into smaller, manageable chunks. Each chunk represents a segment of the document that retains semantic meaning and context.
        if doc:
            for chunk in doc.chunks():
                document = Document(
                    page_content=chunk.to_context_text(),
                    metadata={"source": url, "query": query} # Change: Added query to metadata
                )

                if len(document.page_content) > 30:
                    corpus.append(document)
            
            print(colored(f"Created corpus with {len(corpus)} documents", "green"))
            
        
        if not doc:
            print(colored(f"No document to append to corpus", "red"))
        
        # print(colored(f"DEBUG: Corpus: {corpus}", "yellow"))
        return corpus
    
    except concurrent.futures.TimeoutError:
        print(colored(f"Timeout occurred while processing URL: {url}", "red"))
        return [Document(page_content=f"Timeout occurred while processing URL: {url}", metadata={"source": url})]
    except Exception as e:        
        print(colored(f"Error in Intelligent Chunking for URL {url}: {str(e)}", "red"))
        traceback.print_exc()
        return [Document(page_content=f"Error in Intelligent Chunking for URL: {url}", metadata={"source": url})]


def clear_neo4j_database(graph: Neo4jGraph):
    """
    Clear all nodes and relationships from the Neo4j database.
    """
    try:
        print(colored("\n\nClearing Neo4j database...\n\n", "yellow"))
        # Delete all relationships first
        graph.query("MATCH ()-[r]->() DELETE r")
        # Then delete all nodes
        graph.query("MATCH (n) DELETE n")
        print(colored("Neo4j database cleared successfully.\n\n", "green"))
    except Exception as e:
        print(colored(f"Error clearing Neo4j database: {str(e)}", "red"))
        traceback.print_exc()

def process_document(doc: Document, llm_transformer: LLMGraphTransformer, doc_num: int, total_docs: int) -> List:
    print(colored(f"\n\nStarting Document {doc_num} of {total_docs}: {doc.page_content[:100]}\n\n", "yellow"))
    graph_document = llm_transformer.convert_to_graph_documents([doc])
    print(colored(f"\nFinished Document {doc_num}\n\n", "green"))
    return graph_document

def create_graph_index(
    documents: List[Document] = None, 
    allowed_relationships: list[str] = None, 
    allowed_nodes: list[str] = None, 
    query: str = None, 
    graph: Neo4jGraph = None,
    max_threads: int = 5
) -> Neo4jGraph:
    
    if os.environ.get('LLM_SERVER') == "openai":
        # require hundreds calls to api
        # we create index for every small chunk
        llm = ChatOpenAI(temperature=0, model_name="gpt-4o-mini-2024-07-18")

    else:
        llm = ChatAnthropic(temperature=0, model_name="claude-3-haiku-20240307")

    # llm = ChatAnthropic(temperature=0, model_name="claude-3-haiku-20240307")

    llm_transformer = LLMGraphTransformer(
        llm=llm,
        allowed_nodes=allowed_nodes,
        allowed_relationships=allowed_relationships,
        node_properties=True,
        relationship_properties=True
    )

    graph_documents = []
    total_docs = len(documents)

    # Use ThreadPoolExecutor for parallel processing
    with concurrent.futures.ThreadPoolExecutor(max_workers=max_threads) as executor:
        # Create a list of futures
        futures = [
            executor.submit(process_document, doc, llm_transformer, i+1, total_docs)
            for i, doc in enumerate(documents)
        ]

        # Process completed futures
        for future in concurrent.futures.as_completed(futures):
            graph_documents.extend(future.result())

    print(colored(f"\n\nTotal graph documents: {len(graph_documents)}", "green"))
    # print(colored(f"\n\DEBUG graph documents: {graph_documents}", "red"))

    graph_documents = [graph_documents]
    flattened_graph_list = [item for sublist in graph_documents for item in sublist]
    # print(colored(f"\n\DEBUG Flattened graph documents: {flattened_graph_list}", "yellow"))


    graph.add_graph_documents(
        flattened_graph_list, 
        baseEntityLabel=True, 
        include_source=True,
    )

    return graph


def run_rag(urls: List[str], allowed_nodes: list[str] = None, allowed_relationships: list[str] = None, query: List[str] = None, hybrid: bool = False) -> List[Dict[str, str]]:
    # Change: adapted to take query and url as input.
    # Intellegent document chunking
    with concurrent.futures.ThreadPoolExecutor(max_workers=min(len(urls), 5)) as executor:  
            futures = [executor.submit(intelligent_chunking, url, query) for url, query in zip(urls, query)]
            chunks_list = [future.result() for future in concurrent.futures.as_completed(futures)]
    

    corpus = [item for sublist in chunks_list for item in sublist]

    print(colored(f"\n\nTotal documents in corpus after chunking: {len(corpus)}\n\n", "green"))


    print(colored(f"\n\n DEBUG HYBRID VALUE: {hybrid}\n\n", "yellow"))
    
    # combined with graph
    if hybrid:
        print(colored(f"\n\n Creating Graph Index...\n\n", "green"))
        graph = Neo4jGraph()
        clear_neo4j_database(graph)
        graph = create_graph_index(documents=corpus, allowed_nodes=allowed_nodes, allowed_relationships=allowed_relationships, query=query, graph=graph)
    else:
        graph = None

    retrieved_context = run_hybrid_graph_retrrieval(graph=graph, corpus=corpus, query=query, hybrid=hybrid)

    retrieved_context = str(retrieved_context)

    return retrieved_context

# if __name__ == "__main__":
#     # For testing purposes.
#     url1 = "https://www.reddit.com/r/microsoft/comments/1bkikl1/regretting_buying_copilot_for_microsoft_365"
#     url2 = "'https://www.reddit.com/r/microsoft_365_copilot/comments/1chtqtg/do_you_actually_find_365_copilot_useful_in_your"
#     # url3 = "https://developers.googleblog.com/en/new-features-for-the-gemini-api-and-google-ai-studio/"

#     # query = "cheapest macbook"

#     # urls = [url1, url2, url3]
#     urls = [url1, url2]
#     query = ["Co-pilot Microsoft"]
#     allowed_nodes = None
#     allowed_relationships = None
#     hybrid = False
#     results = run_rag(urls, allowed_nodes=allowed_nodes, allowed_relationships=allowed_relationships, query=query, hybrid=hybrid)

#     print(colored(f"\n\n RESULTS: {results}", "green"))

#     print(f"\n\n RESULTS: {results}")