Spaces:
Running
Running
File size: 16,774 Bytes
75309ed e71eca9 75309ed e71eca9 75309ed 49bd427 75309ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import sys
import os
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.insert(0, root_dir)
import concurrent.futures
import functools
import numpy as np
import faiss
import traceback
import tempfile
from typing import Dict, List, Optional
from termcolor import colored
from langchain_anthropic import ChatAnthropic
from langchain_openai import ChatOpenAI
from langchain_community.graphs import Neo4jGraph
# from langchain_experimental.graph_transformers.llm import LLMGraphTransformer
from tools.llm_graph_transformer import LLMGraphTransformer
from langchain_core.runnables import RunnableConfig
# from langchain_community.vectorstores.neo4j_vector import Neo4jVector
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from langchain_community.vectorstores import FAISS
from flashrank import Ranker, RerankRequest
from llmsherpa.readers import LayoutPDFReader
from langchain.schema import Document
from config.load_configs import load_config
from langchain_community.docstore.in_memory import InMemoryDocstore
from fake_useragent import UserAgent
import asyncio
from dotenv import load_dotenv
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.insert(0, root_dir)
# config_path = os.path.join(os.path.dirname(__file__), '..', 'config', 'config.yaml')
# load_config(config_path)
load_dotenv()
ua = UserAgent()
os.environ["USER_AGENT"] = ua.random
os.environ["FAISS_OPT_LEVEL"] = "generic"
def timeout(max_timeout):
"""Timeout decorator, parameter in seconds."""
def timeout_decorator(item):
"""Wrap the original function."""
@functools.wraps(item)
def func_wrapper(*args, **kwargs):
"""Closure for function."""
with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(item, *args, **kwargs)
try:
return future.result(max_timeout)
except concurrent.futures.TimeoutError:
return [Document(page_content=f"Timeout occurred while processing URL: {args[0]}", metadata={"source": args[0]})]
return func_wrapper
return timeout_decorator
# Change: Added function to deduplicate re-ranked results.
def deduplicate_results(results, rerank=True):
seen = set()
unique_results = []
for result in results:
# Create a tuple of the content and source to use as a unique identifier
if rerank:
identifier = (result['text'], result['meta'])
else:
# When not reranking, result is a tuple (doc, score)
doc, score = result
identifier = (doc.page_content, doc.metadata.get('source', ''))
if identifier not in seen:
seen.add(identifier)
unique_results.append(result)
return unique_results
def index_and_rank(corpus: List[Document], query: str, top_percent: float = 20, batch_size: int = 25) -> List[Dict[str, str]]:
print(colored(f"\n\nStarting indexing and ranking with FastEmbeddings and FAISS for {len(corpus)} documents\n\n", "green"))
CACHE_DIR = "/app/fastembed_cache"
embeddings = FastEmbedEmbeddings(model_name='jinaai/jina-embeddings-v2-small-en', max_length=512, cache_dir=CACHE_DIR)
print(colored("\n\nCreating FAISS index...\n\n", "green"))
try:
# Initialize an empty FAISS index
index = None
docstore = InMemoryDocstore({})
index_to_docstore_id = {}
# Process documents in batches
for i in range(0, len(corpus), batch_size):
batch = corpus[i:i+batch_size]
texts = [doc.page_content for doc in batch]
metadatas = [doc.metadata for doc in batch]
print(f"Processing batch {i // batch_size + 1} with {len(texts)} documents")
# Embed the batch
batch_embeddings = embeddings.embed_documents(texts)
# Convert embeddings to numpy array with float32 dtype
batch_embeddings_np = np.array(batch_embeddings, dtype=np.float32)
if index is None:
# Create the index with the first batch
index = faiss.IndexFlatIP(batch_embeddings_np.shape[1])
# Normalize the embeddings
faiss.normalize_L2(batch_embeddings_np)
# Add embeddings to the index
start_id = len(index_to_docstore_id)
index.add(batch_embeddings_np)
# Update docstore and index_to_docstore_id
for j, (text, metadata) in enumerate(zip(texts, metadatas)):
doc_id = f"{start_id + j}"
docstore.add({doc_id: Document(page_content=text, metadata=metadata)})
index_to_docstore_id[start_id + j] = doc_id
print(f"Total documents indexed: {len(index_to_docstore_id)}")
# Create a FAISS retriever
retriever = FAISS(embeddings, index, docstore, index_to_docstore_id)
# Perform the search
k = min(40, len(corpus)) # Ensure we don't try to retrieve more documents than we have
# Change: Retrieve documents based on query in metadata
similarity_cache = {}
docs = []
for doc in corpus:
query = doc.metadata.get('query', '')
# Check if we've already performed this search
if query in similarity_cache:
cached_results = similarity_cache[query]
docs.extend(cached_results)
else:
# Perform the similarity search
search_results = retriever.similarity_search_with_score(query, k=k)
# Cache the results
similarity_cache[query] = search_results
# Add to docs
docs.extend(search_results)
docs = deduplicate_results(docs, rerank=False)
print(colored(f"\n\nRetrieved {len(docs)} documents\n\n", "green"))
passages = []
for idx, (doc, score) in enumerate(docs, start=1):
try:
passage = {
"id": idx,
"text": doc.page_content,
"meta": doc.metadata.get("source", {"source": "unknown"}),
"score": float(score) # Convert score to float
}
passages.append(passage)
except Exception as e:
print(colored(f"Error in creating passage: {str(e)}", "red"))
traceback.print_exc()
print(colored("\n\nRe-ranking documents...\n\n", "green"))
# Change: reranker done based on query in metadata
CACHE_DIR_RANKER = "/app/reranker_cache"
ranker = Ranker(cache_dir=CACHE_DIR_RANKER)
results = []
processed_queries = set()
# Perform reranking with query caching
for doc in corpus:
query = doc.metadata.get('query', '')
# Skip if we've already processed this query
if query in processed_queries:
continue
rerankrequest = RerankRequest(query=query, passages=passages)
result = ranker.rerank(rerankrequest)
results.extend(result)
# Mark this query as processed
processed_queries.add(query)
results = deduplicate_results(results, rerank=True)
print(colored(f"\n\nRe-ranking complete with {len(results)} documents\n\n", "green"))
# Sort results by score in descending order
sorted_results = sorted(results, key=lambda x: x['score'], reverse=True)
# Calculate the number of results to return based on the percentage
num_results = max(1, int(len(sorted_results) * (top_percent / 100)))
top_results = sorted_results[:num_results]
final_results = [
{
"text": result['text'],
"meta": result['meta'],
"score": result['score']
}
for result in top_results
]
print(colored(f"\n\nReturned top {top_percent}% of results ({len(final_results)} documents)\n\n", "green"))
# Add debug information about scores
scores = [result['score'] for result in results]
print(f"Score distribution: min={min(scores):.4f}, max={max(scores):.4f}, mean={np.mean(scores):.4f}, median={np.median(scores):.4f}")
print(f"Unique scores: {len(set(scores))}")
if final_results:
print(f"Score range for top {top_percent}% results: {final_results[-1]['score']:.4f} to {final_results[0]['score']:.4f}")
except Exception as e:
print(colored(f"Error in indexing and ranking: {str(e)}", "red"))
traceback.print_exc()
final_results = [{"text": "Error in indexing and ranking", "meta": {"source": "unknown"}, "score": 0.0}]
return final_results
def run_hybrid_graph_retrieval(graph: Neo4jGraph = None, corpus: List[Document] = None, query: str = None, hybrid: bool = False):
print(colored(f"\n\Initiating Retrieval...\n\n", "green"))
if hybrid:
print(colored("Running Hybrid Retrieval...", "yellow"))
unstructured_data = index_and_rank(corpus, query)
query = f"""
MATCH p = (n)-[r]->(m)
WHERE COUNT {{(n)--()}} > 30
RETURN p AS Path
LIMIT 85
"""
response = graph.query(query)
retrieved_context = f"Important Relationships:{response}\n\n Additional Context:{unstructured_data}"
else:
print(colored("Running Dense Only Retrieval...", "yellow"))
unstructured_data = index_and_rank(corpus, query)
retrieved_context = f"Additional Context:{unstructured_data}"
return retrieved_context
@timeout(20) # Change: Takes url and query as input
def intelligent_chunking(url: str, query: str) -> List[Document]:
try:
print(colored(f"\n\nStarting Intelligent Chunking with LLM Sherpa for URL: {url}\n\n", "green"))
llmsherpa_api_url = os.environ.get('LLM_SHERPA_SERVER')
if not llmsherpa_api_url:
raise ValueError("LLM_SHERPA_SERVER environment variable is not set")
corpus = []
try:
print(colored("Starting LLM Sherpa LayoutPDFReader...\n\n", "yellow"))
reader = LayoutPDFReader(llmsherpa_api_url)
doc = reader.read_pdf(url)
print(colored("Finished LLM Sherpa LayoutPDFReader...\n\n", "yellow"))
except Exception as e:
print(colored(f"Error in LLM Sherpa LayoutPDFReader: {str(e)}", "red"))
traceback.print_exc()
doc = None
if doc:
for chunk in doc.chunks():
document = Document(
page_content=chunk.to_context_text(),
metadata={"source": url, "query": query} # Change: Added query to metadata
)
if len(document.page_content) > 30:
corpus.append(document)
print(colored(f"Created corpus with {len(corpus)} documents", "green"))
if not doc:
print(colored(f"No document to append to corpus", "red"))
# print(colored(f"DEBUG: Corpus: {corpus}", "yellow"))
return corpus
except concurrent.futures.TimeoutError:
print(colored(f"Timeout occurred while processing URL: {url}", "red"))
return [Document(page_content=f"Timeout occurred while processing URL: {url}", metadata={"source": url})]
except Exception as e:
print(colored(f"Error in Intelligent Chunking for URL {url}: {str(e)}", "red"))
traceback.print_exc()
return [Document(page_content=f"Error in Intelligent Chunking for URL: {url}", metadata={"source": url})]
def clear_neo4j_database(graph: Neo4jGraph):
"""
Clear all nodes and relationships from the Neo4j database.
"""
try:
print(colored("\n\nClearing Neo4j database...\n\n", "yellow"))
# Delete all relationships first
graph.query("MATCH ()-[r]->() DELETE r")
# Then delete all nodes
graph.query("MATCH (n) DELETE n")
print(colored("Neo4j database cleared successfully.\n\n", "green"))
except Exception as e:
print(colored(f"Error clearing Neo4j database: {str(e)}", "red"))
traceback.print_exc()
def create_graph_index(
documents: List[Document] = None,
allowed_relationships: List[str] = None,
allowed_nodes: List[str] = None,
query: str = None,
graph: Neo4jGraph = None,
batch_size: int = 10,
max_workers: int = 5 # Number of threads in the pool
) -> Neo4jGraph:
if os.environ.get('LLM_SERVER') == "openai":
llm = ChatOpenAI(temperature=0, model_name="gpt-4o-mini-2024-07-18")
else:
llm = ChatAnthropic(temperature=0, model_name="claude-3-haiku-20240307")
llm_transformer = LLMGraphTransformer(
llm=llm,
allowed_nodes=allowed_nodes,
allowed_relationships=allowed_relationships,
node_properties=True,
relationship_properties=True
)
total_docs = len(documents)
# Prepare batches
batches = [
documents[i:i + batch_size]
for i in range(0, total_docs, batch_size)
]
total_batches = len(batches)
print(colored(f"\nTotal documents: {total_docs}, Total batches: {total_batches}\n", "green"))
graph_documents = []
async def process_batch_async(batch_docs, batch_number):
print(colored(f"\nProcessing batch {batch_number} of {total_batches}\n", "yellow"))
try:
tasks = [
asyncio.create_task(llm_transformer.aprocess_response(doc))
for doc in batch_docs
]
batch_graph_docs = await asyncio.gather(*tasks)
print(colored(f"Finished batch {batch_number}\n", "green"))
return batch_graph_docs
except Exception as e:
print(colored(f"Error processing batch {batch_number}: {str(e)}", "red"))
traceback.print_exc()
return []
for idx, batch in enumerate(batches):
batch_number = idx + 1
batch_graph_docs = asyncio.run(process_batch_async(batch, batch_number))
graph_documents.extend(batch_graph_docs)
print(colored(f"\nTotal graph documents: {len(graph_documents)}\n", "green"))
# Add documents to the graph
graph.add_graph_documents(
graph_documents,
baseEntityLabel=True,
include_source=True,
)
return graph
def run_rag(urls: List[str], allowed_nodes: List[str] = None, allowed_relationships: List[str] = None, query: List[str] = None, hybrid: bool = False) -> List[Dict[str, str]]:
# Change: adapted to take query and url as input.
with concurrent.futures.ThreadPoolExecutor(max_workers=min(len(urls), 5)) as executor:
futures = [executor.submit(intelligent_chunking, url, query) for url, query in zip(urls, query)]
chunks_list = [future.result() for future in concurrent.futures.as_completed(futures)]
corpus = [item for sublist in chunks_list for item in sublist]
print(colored(f"\n\nTotal documents in corpus after chunking: {len(corpus)}\n\n", "green"))
print(colored(f"\n\n DEBUG HYBRID VALUE: {hybrid}\n\n", "yellow"))
if hybrid:
print(colored(f"\n\n Creating Graph Index...\n\n", "green"))
graph = Neo4jGraph()
clear_neo4j_database(graph)
graph = create_graph_index(documents=corpus, allowed_nodes=allowed_nodes, allowed_relationships=allowed_relationships, query=query, graph=graph)
else:
graph = None
retrieved_context = run_hybrid_graph_retrieval(graph=graph, corpus=corpus, query=query, hybrid=hybrid)
retrieved_context = str(retrieved_context)
return retrieved_context
if __name__ == "__main__":
# For testing purposes.
url1 = "https://www.reddit.com/r/microsoft/comments/1bkikl1/regretting_buying_copilot_for_microsoft_365"
url2 = "'https://www.reddit.com/r/microsoft_365_copilot/comments/1chtqtg/do_you_actually_find_365_copilot_useful_in_your"
# url3 = "https://developers.googleblog.com/en/new-features-for-the-gemini-api-and-google-ai-studio/"
# query = "cheapest macbook"
# urls = [url1, url2, url3]
urls = [url1, url2]
query = ["Co-pilot Microsoft"]
allowed_nodes = None
allowed_relationships = None
hybrid = False
results = run_rag(urls, allowed_nodes=allowed_nodes, allowed_relationships=allowed_relationships, query=query, hybrid=hybrid)
print(colored(f"\n\n RESULTS: {results}", "green"))
print(f"\n\n RESULTS: {results}") |