JarvisChan630 commited on
Commit
67b3290
·
1 Parent(s): 75309ed
Files changed (2) hide show
  1. README.md +73 -8
  2. agents/meta_agent.py +5 -5
README.md CHANGED
@@ -2,6 +2,46 @@
2
 
3
  A project for versatile AI agents that can run with proprietary models or completely open-source. The meta expert has two agents: a basic [Meta Agent](Docs/Meta-Prompting%20Overview.MD), and [Jar3d](Docs/Introduction%20to%20Jar3d.MD), a more sophisticated and versatile agent.
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ## Table of Contents
6
 
7
  1. [Core Concepts](#core-concepts)
@@ -19,30 +59,55 @@ A project for versatile AI agents that can run with proprietary models or comple
19
 
20
  This project leverages four core concepts:
21
 
22
- 1. Meta prompting: For more information, refer to the paper on **Meta-Prompting** ([source](https://arxiv.black/pdf/2401.12954)). Read our notes on [Meta-Prompting Overview](Docs/Meta-Prompting%20Overview.MD) for a more concise overview.
23
- 2. Chain of Reasoning: For [Jar3d](#setup-for-jar3d), we also leverage an adaptation of [Chain-of-Reasoning](https://github.com/ProfSynapse/Synapse_CoR)
24
  3. [Jar3d](#setup-for-jar3d) uses retrieval augmented generation, which isn't used within the [Basic Meta Agent](#setup-for-basic-meta-agent). Read our notes on [Overview of Agentic RAG](Docs/Overview%20of%20Agentic%20RAG.MD).
25
- 4. Jar3d can generate knowledge graphs from web-pages allowing it to produce more comprehensive outputs.
26
 
27
  ## Prerequisites
28
 
29
- 1. Clone this project to your work environment/local directory:
 
 
 
 
30
  ```bash
31
- git clone https://github.com/brainqub3/meta_expert.git
 
 
 
 
 
32
  ```
33
 
34
- 2. You will need Docker and Docker Composed installed to get the project up and running:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  - [Docker](https://www.docker.com/get-started)
36
  - [Docker Compose](https://docs.docker.com/compose/install/)
37
 
38
- 3. **If you wish to use Hybrid Retrieval, you will need to create a Free Neo4j Aura Account:**
39
  - [Neo4j Aura](https://neo4j.com/)
40
 
41
  ## Configuration
42
 
43
  1. Navigate to the Repository:
44
  ```bash
45
- cd /path/to/your-repo/meta_expert
46
  ```
47
 
48
  2. Open the `config.yaml` file:
 
2
 
3
  A project for versatile AI agents that can run with proprietary models or completely open-source. The meta expert has two agents: a basic [Meta Agent](Docs/Meta-Prompting%20Overview.MD), and [Jar3d](Docs/Introduction%20to%20Jar3d.MD), a more sophisticated and versatile agent.
4
 
5
+ Act as an opne source perplexity.
6
+
7
+ Thanks John Adeojo, who brings this wonderful project to open source community!
8
+
9
+ ## PMF - What problem this project has solved?
10
+
11
+ ## Technical Detail
12
+ What is the logics?
13
+
14
+ LLM Application Workflow
15
+ 1. User Query: The user initiates the interaction by submitting a query or request for information.
16
+ 2. Agent Accesses the Internet: The agent retrieves relevant information from various online sources, such as web pages, articles, and databases.
17
+ 3. Document Chunking: The retrieved URLs are processed to break down the content into smaller, manageable documents or chunks. This step ensures that the information is more digestible and can be analyzed effectively.
18
+ 4. Vectorization: Each document chunk is then transformed into a multi-dimensional embedding using vectorization techniques. This process captures the semantic meaning of the text, allowing for nuanced comparisons between different pieces of information.
19
+ 5. Similarity Search: A similarity search is performed using cosine similarity (or another appropriate metric) to identify and rank the most relevant document chunks in relation to the original user query. This step helps in finding the closest matches based on the embeddings generated earlier.
20
+ 6. Response Generation: Finally, the most relevant chunks are selected, and the LLM synthesizes them into a coherent response that directly addresses the user's query.
21
+
22
+ ## Bullet points
23
+ - By implemented RAG, Chain-of-Reasoning, and Meta-Prompting to complete long-running research tasks.
24
+
25
+ - Neo4j Knowledge Graphs
26
+ -Why use this?
27
+ naive RAG:
28
+ ![naive](image.png)
29
+ Complex:
30
+ ![why need graph](assets/image.png)
31
+
32
+
33
+ - Docker for backend
34
+
35
+ - NLM-Ingestor - llmsherpa API - Chunk data
36
+
37
+
38
+
39
+
40
+ ## FAQ
41
+ 1. Is it necessary for a recursion more than 30 rounds? Is it spending money too much?
42
+
43
+
44
+
45
  ## Table of Contents
46
 
47
  1. [Core Concepts](#core-concepts)
 
59
 
60
  This project leverages four core concepts:
61
 
62
+ 1. **Meta prompting**: For more information, refer to the paper on **Meta-Prompting** ([source](https://arxiv.black/pdf/2401.12954)). Read our notes on [Meta-Prompting Overview](Docs/Meta-Prompting%20Overview.MD) for a more concise overview.
63
+ 2. **Chain of Reasoning**: For [Jar3d](#setup-for-jar3d), we also leverage an adaptation of [Chain-of-Reasoning](https://github.com/ProfSynapse/Synapse_CoR)
64
  3. [Jar3d](#setup-for-jar3d) uses retrieval augmented generation, which isn't used within the [Basic Meta Agent](#setup-for-basic-meta-agent). Read our notes on [Overview of Agentic RAG](Docs/Overview%20of%20Agentic%20RAG.MD).
65
+ 4. **Jar3d** can generate knowledge graphs from web-pages allowing it to produce more comprehensive outputs.
66
 
67
  ## Prerequisites
68
 
69
+ ### Environment Setup
70
+ 1. **Install Anaconda:**
71
+ Download Anaconda from [https://www.anaconda.com/](https://www.anaconda.com/).
72
+
73
+ 2. **Create a Virtual Environment:**
74
  ```bash
75
+ conda create -n agent_env python=3.11 pip
76
+ ```
77
+
78
+ 3. **Activate the Virtual Environment:**
79
+ ```bash
80
+ conda activate agent_env
81
  ```
82
 
83
+ ## Repository Setup
84
+ 1. **Clone the Repository:**
85
+ ```bash
86
+ git clone https://github.com/JarvisChan666/SuperExpert
87
+ ```
88
+
89
+ 2. **Navigate to the Repository:**
90
+ ```bash
91
+ cd /path/to/your-repo/meta_expert
92
+ ```
93
+
94
+ 3. **Install Requirements:**
95
+ ```bash
96
+ pip install -r requirements.txt
97
+ ```
98
+
99
+ 4. You will need Docker and Docker Composed installed to get the project up and running:
100
  - [Docker](https://www.docker.com/get-started)
101
  - [Docker Compose](https://docs.docker.com/compose/install/)
102
 
103
+ 5. **If you wish to use Hybrid Retrieval, you will need to create a Free Neo4j Aura Account:**
104
  - [Neo4j Aura](https://neo4j.com/)
105
 
106
  ## Configuration
107
 
108
  1. Navigate to the Repository:
109
  ```bash
110
+ cd /path/to/your-repo/SuperExpert
111
  ```
112
 
113
  2. Open the `config.yaml` file:
agents/meta_agent.py CHANGED
@@ -204,7 +204,8 @@ class ToolExpert(BaseAgent[State]):
204
 
205
  def get_guided_json(self, state: State) -> Dict[str, Any]:
206
  pass
207
-
 
208
  def use_tool(self, mode: str, tool_input: str, doc_type: str = None) -> Any:
209
  if mode == "serper":
210
  results = serper_search(tool_input, self.location)
@@ -402,10 +403,9 @@ if __name__ == "__main__":
402
  "server": "claude",
403
  "temperature": 0.5
404
  }
405
-
406
- For OpenAI
407
  agent_kwargs = {
408
- "model": "gpt-4o",
409
  "server": "openai",
410
  "temperature": 0.1
411
  }
@@ -473,7 +473,7 @@ if __name__ == "__main__":
473
  break
474
 
475
  # current_time = datetime.now()
476
- recursion_limit = 40
477
  state["recursion_limit"] = recursion_limit
478
  state["user_input"] = query
479
  limit = {"recursion_limit": recursion_limit}
 
204
 
205
  def get_guided_json(self, state: State) -> Dict[str, Any]:
206
  pass
207
+
208
+ # Use Serper to search
209
  def use_tool(self, mode: str, tool_input: str, doc_type: str = None) -> Any:
210
  if mode == "serper":
211
  results = serper_search(tool_input, self.location)
 
403
  "server": "claude",
404
  "temperature": 0.5
405
  }
406
+
 
407
  agent_kwargs = {
408
+ "model": "gpt-4o-mini",
409
  "server": "openai",
410
  "temperature": 0.1
411
  }
 
473
  break
474
 
475
  # current_time = datetime.now()
476
+ recursion_limit = 15
477
  state["recursion_limit"] = recursion_limit
478
  state["user_input"] = query
479
  limit = {"recursion_limit": recursion_limit}