import sys import os import io root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, root_dir) import concurrent.futures import functools import requests import numpy as np import faiss import traceback import tempfile from typing import Dict, List from termcolor import colored from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry from langchain_community.embeddings.fastembed import FastEmbedEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.vectorstores.utils import DistanceStrategy from flashrank import Ranker, RerankRequest from llmsherpa.readers import LayoutPDFReader from langchain.schema import Document from config.load_configs import load_config from langchain_community.docstore.in_memory import InMemoryDocstore from fake_useragent import UserAgent from multiprocessing import Pool, cpu_count from dotenv import load_dotenv root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, root_dir) # config_path = os.path.join(os.path.dirname(__file__), '..', 'config', 'config.yaml') # load_config(config_path) load_dotenv() ua = UserAgent() os.environ["USER_AGENT"] = ua.random os.environ["FAISS_OPT_LEVEL"] = "generic" def timeout(max_timeout): """Timeout decorator, parameter in seconds.""" def timeout_decorator(item): """Wrap the original function.""" @functools.wraps(item) def func_wrapper(*args, **kwargs): """Closure for function.""" with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor: future = executor.submit(item, *args, **kwargs) try: return future.result(max_timeout) except concurrent.futures.TimeoutError: return [Document(page_content=f"Timeout occurred while processing URL: {args[0]}", metadata={"source": args[0]})] return func_wrapper return timeout_decorator @timeout(20) # 20 second timeout def intelligent_chunking(url: str) -> List[Document]: try: print(colored(f"\n\nStarting Intelligent Chunking with LLM Sherpa for URL: {url}\n\n", "green")) llmsherpa_api_url = os.environ.get('LLM_SHERPA_SERVER') if not llmsherpa_api_url: raise ValueError("LLM_SHERPA_SERVER environment variable is not set") corpus = [] try: print(colored("Starting LLM Sherpa LayoutPDFReader...\n\n", "yellow")) reader = LayoutPDFReader(llmsherpa_api_url) doc = reader.read_pdf(url) print(colored("Finished LLM Sherpa LayoutPDFReader...\n\n", "yellow")) except Exception as e: print(colored(f"Error in LLM Sherpa LayoutPDFReader: {str(e)}", "red")) traceback.print_exc() doc = None if doc: for chunk in doc.chunks(): document = Document( page_content=chunk.to_context_text(), metadata={"source": url} ) corpus.append(document) print(colored(f"Created corpus with {len(corpus)} documents", "green")) if not doc: print(colored(f"No document to append to corpus", "red")) return corpus except concurrent.futures.TimeoutError: print(colored(f"Timeout occurred while processing URL: {url}", "red")) return [Document(page_content=f"Timeout occurred while processing URL: {url}", metadata={"source": url})] except Exception as e: print(colored(f"Error in Intelligent Chunking for URL {url}: {str(e)}", "red")) traceback.print_exc() return [Document(page_content=f"Error in Intelligent Chunking for URL: {url}", metadata={"source": url})] def index_and_rank(corpus: List[Document], query: str, top_percent: float = 60, batch_size: int = 25) -> List[Dict[str, str]]: print(colored(f"\n\nStarting indexing and ranking with FastEmbeddings and FAISS for {len(corpus)} documents\n\n", "green")) embeddings = FastEmbedEmbeddings(model_name='jinaai/jina-embeddings-v2-small-en', max_length=512) print(colored("\n\nCreating FAISS index...\n\n", "green")) try: # Initialize an empty FAISS index index = None docstore = InMemoryDocstore({}) index_to_docstore_id = {} # Process documents in batches for i in range(0, len(corpus), batch_size): batch = corpus[i:i+batch_size] texts = [doc.page_content for doc in batch] metadatas = [doc.metadata for doc in batch] print(f"Processing batch {i // batch_size + 1} with {len(texts)} documents") # Embed the batch batch_embeddings = embeddings.embed_documents(texts) # Convert embeddings to numpy array with float32 dtype batch_embeddings_np = np.array(batch_embeddings, dtype=np.float32) if index is None: # Create the index with the first batch index = faiss.IndexFlatIP(batch_embeddings_np.shape[1]) # Normalize the embeddings faiss.normalize_L2(batch_embeddings_np) # Add embeddings to the index start_id = len(index_to_docstore_id) index.add(batch_embeddings_np) # Update docstore and index_to_docstore_id for j, (text, metadata) in enumerate(zip(texts, metadatas)): doc_id = f"{start_id + j}" docstore.add({doc_id: Document(page_content=text, metadata=metadata)}) index_to_docstore_id[start_id + j] = doc_id print(f"Total documents indexed: {len(index_to_docstore_id)}") # Create a FAISS retriever retriever = FAISS(embeddings, index, docstore, index_to_docstore_id) # Perform the search k = min(40, len(corpus)) # Ensure we don't try to retrieve more documents than we have docs = retriever.similarity_search_with_score(query, k=k) print(colored(f"\n\nRetrieved {len(docs)} documents\n\n", "green")) passages = [] for idx, (doc, score) in enumerate(docs, start=1): try: passage = { "id": idx, "text": doc.page_content, "meta": doc.metadata, "score": float(score) # Convert score to float } passages.append(passage) except Exception as e: print(colored(f"Error in creating passage: {str(e)}", "red")) traceback.print_exc() print(colored("\n\nRe-ranking documents...\n\n", "green")) ranker = Ranker(cache_dir=tempfile.mkdtemp()) rerankrequest = RerankRequest(query=query, passages=passages) results = ranker.rerank(rerankrequest) print(colored("\n\nRe-ranking complete\n\n", "green")) # Sort results by score in descending order sorted_results = sorted(results, key=lambda x: x['score'], reverse=True) # Calculate the number of results to return based on the percentage num_results = max(1, int(len(sorted_results) * (top_percent / 100))) top_results = sorted_results[:num_results] final_results = [ { "text": result['text'], "meta": result['meta'], "score": result['score'] } for result in top_results ] print(colored(f"\n\nReturned top {top_percent}% of results ({len(final_results)} documents)\n\n", "green")) # Add debug information about scores scores = [result['score'] for result in results] print(f"Score distribution: min={min(scores):.4f}, max={max(scores):.4f}, mean={np.mean(scores):.4f}, median={np.median(scores):.4f}") print(f"Unique scores: {len(set(scores))}") if final_results: print(f"Score range for top {top_percent}% results: {final_results[-1]['score']:.4f} to {final_results[0]['score']:.4f}") except Exception as e: print(colored(f"Error in indexing and ranking: {str(e)}", "red")) traceback.print_exc() final_results = [{"text": "Error in indexing and ranking", "meta": {"source": "unknown"}, "score": 0.0}] return final_results def run_rag(urls: List[str], query: str) -> List[Dict[str, str]]: # Use ThreadPoolExecutor instead of multiprocessing with concurrent.futures.ThreadPoolExecutor(max_workers=min(len(urls), 3)) as executor: futures = [executor.submit(intelligent_chunking, url) for url in urls] chunks_list = [future.result() for future in concurrent.futures.as_completed(futures)] # Flatten the list of lists into a single corpus corpus = [chunk for chunks in chunks_list for chunk in chunks] print(colored(f"\n\nTotal documents in corpus after chunking: {len(corpus)}\n\n", "green")) ranked_docs = index_and_rank(corpus, query) return ranked_docs # def run_rag(urls: List[str], query: str) -> List[Dict[str, str]]: # # Use multiprocessing to chunk URLs in parallel # with Pool(processes=min(cpu_count(), len(urls))) as pool: # chunks_list = pool.map(intelligent_chunking, urls) # # Flatten the list of lists into a single corpus # corpus = [chunk for chunks in chunks_list for chunk in chunks] # print(colored(f"\n\nTotal documents in corpus after chunking: {len(corpus)}\n\n", "green")) # ranked_docs = index_and_rank(corpus, query) # return ranked_docs if __name__ == "__main__": # For testing purposes. url1 = "https://www.amazon.com/dp/B0CX23GFMJ/ref=fs_a_mbt2_us4" url2 = "https://www.amazon.com/dp/B0CX23V2ZK/ref=fs_a_mbt2_us3" url3 = "https://der8auer.com/x570-motherboard-vrm-overview/" query = "cheapest macbook" urls = [url1, url2, url3] results = run_rag(urls, query) print(f"\n\n RESULTS: {results}")