File size: 7,881 Bytes
75885cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc4c10f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75885cc
fc4c10f
 
 
 
75885cc
 
fc4c10f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75885cc
34fea33
fc4c10f
 
75885cc
 
 
 
fc4c10f
75885cc
 
 
b6d741a
 
 
 
 
 
 
75885cc
b6d741a
5c4105b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75885cc
 
 
b6d741a
75885cc
ca826ce
 
b6d741a
 
75885cc
 
 
 
 
 
 
 
 
 
 
 
 
fc4c10f
45f9b4e
fc4c10f
 
75885cc
fc4c10f
 
75885cc
 
 
fc4c10f
75885cc
 
fc4c10f
75885cc
 
 
 
fc4c10f
75885cc
66fb1d2
6877dc0
 
 
 
 
75885cc
c4285cd
75885cc
c4285cd
75885cc
c4285cd
 
 
 
 
 
 
 
 
 
 
 
75885cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4285cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from gradio_client import Client
from langchain.document_loaders.text import TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from langchain.embeddings import HuggingFaceEmbeddings
from langchain import PromptTemplate
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.manager import CallbackManager
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from huggingface_hub import hf_hub_download
from langchain.llms import LlamaCpp
from langchain.chains import LLMChain
import time
import streamlit as st



class MyBot:
    def __init__(self, text_file, model_id, model_basename):
        self.text_file = text_file
        self.model_id = model_id
        self.model_basename = model_basename
        self.loader = TextLoader(self.text_file)
        self.pages = self.loader.load()
        self.chunks_text = self.split_text(self.pages)
        self.docs_text = [doc.page_content for doc in self.chunks_text]
        self.embedding = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
        self.VectorStore = FAISS.from_texts(self.docs_text, embedding=self.embedding)
        self.model_path = self.download_model(self.model_id, self.model_basename)
        self.callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
        self.llm = self.init_llm(self.model_path, self.callback_manager)
        self.memory = ConversationBufferMemory(
            memory_key="chat_history",
            return_messages=True,
            input_key='question',
            output_key='answer'
        )
        self.qa = self.init_qa(self.llm, self.VectorStore, self.memory)

    def split_text(self, documents):
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000,
            chunk_overlap=150,
            length_function=len,
            add_start_index=True,
        )
        chunks = text_splitter.split_documents(documents)
        return chunks

    def download_model(self, model_id, model_basename):
        model_path = hf_hub_download(
            repo_id=model_id,
            filename=model_basename,
            resume_download=True,
        )
        print("model_path : ", model_path)
        return model_path

    def init_llm(self, model_path, callback_manager):
        CONTEXT_WINDOW_SIZE = 1500
        MAX_NEW_TOKENS = 2000
        N_BATCH = 512
        n_gpu_layers = 40
        kwargs = {
            "model_path": model_path,
            "n_ctx": CONTEXT_WINDOW_SIZE,
            "max_tokens": MAX_NEW_TOKENS,
            "n_batch": N_BATCH,
            "n_gpu_layers": n_gpu_layers,
            "callback_manager": callback_manager,
            "verbose":True,
        }
        llm = LlamaCpp(**kwargs)
        return llm

    def init_qa(self, llm, VectorStore, memory):
        qa = ConversationalRetrievalChain.from_llm(
            llm,
            chain_type="stuff",
            retriever=VectorStore.as_retriever(search_kwargs={"k": 5}),
            memory=memory,
            return_source_documents=True,
            verbose=False,
        )
        return qa

    def translate(self, text, source,target):
        client = Client("https://facebook-seamless-m4t-v2-large.hf.space/--replicas/2bmbx/")
        result = client.predict(
        text,
        source,
        target,
        api_name="/t2tt"
        )

#---------------------------------------------------------

# Set page config
st.set_page_config(
    page_title="πŸ€–πŸ’Ό πŸ‡²πŸ‡¦ Financial advisor is Here",
    page_icon="πŸ€–",
    layout="wide",
    initial_sidebar_state="expanded",
)

# Set Streamlit theme

# Define the custom CSS
custom_css = """
<style>
body {
  background-color: #FFE6C7;
}
h1 {
  color: #454545;
}
h2 {
  color: #FF6000;
}
h3 {
  color: #FFA559;
}
</style>
"""

# Add the custom CSS to the app
st.markdown(custom_css, unsafe_allow_html=True)

# Replicate Credentials
with st.sidebar:
    st.title('Mokawil.AI is Here πŸ€–πŸ’Ό')
    st.markdown('πŸ€– An AI-powered advisor designed to assist founders (or anyone aspiring to start their own company) with various aspects of business in Morocco. This includes legal considerations, budget planning, strategies for success, and much more.')
    selected_language = st.sidebar.selectbox("Select Language", ["English", "Darija"], index=0)  # English is the default



# Store LLM generated responses
if "messages" not in st.session_state.keys():
    st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}]

# Display or clear chat messages
for message in st.session_state.messages:
    if message["role"] == "user" :
      with st.chat_message(message["role"], avatar="user.png"):
          st.write(message["content"])
    else : 
      with st.chat_message(message["role"], avatar="logo.png"):
          st.write(message["content"])

# Create an instance of LangChain
lc = MyBot("Data_blog.txt", "TheBloke/Mistral-7B-OpenOrca-GGUF", "mistral-7b-openorca.Q4_K_M.gguf")

# Use the instance methods in your Streamlit application
def clear_chat_history():
    lc.memory.clear()
    lc.qa = lc.init_qa(lc.llm, lc.VectorStore, lc.memory)
    st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}]

def generate_llm_response(prompt_input):
    res = lc.qa(f'''{prompt_input}''')

    if selected_language == "Darija":
        translated_response = lc.translate(res['answer'])
        return translated_response
    else:
        return res['answer']


# User-provided prompt
if prompt := st.chat_input("Cities to start my buisiness in finance?"):
    if selected_language == "Darija":
        tprompt = translate(str(prompt),"Moroccan Arabic","English")
    else:
        tprompt = prompt
    st.session_state.messages.append({"role": "user", "content": tprompt})
    with st.chat_message("user", avatar="user.png"):
        st.write(prompt)

# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
  with st.chat_message("assistant", avatar="logo.png"):
      with st.spinner("Thinking..."):
          response = generate_llm_response(st.session_state.messages[-1]["content"])
      placeholder = st.empty()
      full_response = ''
      for item in response:
          full_response += item
          placeholder.markdown(full_response)
          time.sleep(0.05)
      placeholder.markdown(full_response)
  message = {"role": "assistant", "content": full_response}
  st.session_state.messages.append(message)

# Example prompt
with st.sidebar : 
  st.title('Examples :')

def promptExample1():
    prompt = "How can I start my company in Morocco?"
    st.session_state.messages.append({"role": "user", "content": prompt})

# Example prompt
def promptExample2():
    prompt = "What are some recommended cities for starting a business in the finance sector?"
    st.session_state.messages.append({"role": "user", "content": prompt})

# Example prompt
def promptExample3():
    prompt = "What is the estimated amount of money I need to start my company?"
    st.session_state.messages.append({"role": "user", "content": prompt})


st.sidebar.button('How can I start my company in Morocco?', on_click=promptExample1)
st.sidebar.button('What are some recommended cities for starting a business in the finance sector?', on_click=promptExample2)
st.sidebar.button('What is the estimated amount of money I need to start my company?', on_click=promptExample3)


with st.sidebar:
    st.title('Disclaimer ⚠️:')
    st.markdown('may introduce false information')
    st.markdown('consult with a preofessionel advisor for more specific problems')