Javiai's picture
Update app.py
59a9100
raw
history blame
1.71 kB
import gradio as gr
import torch
from PIL import ImageDraw
# Model
model_path = 'model_torch.pt'
model = torch.hub.load('Ultralytics/yolov5', 'custom', model_path, verbose = False)
model.eval()
labels = model.names
colors = ["red", "blue", "green", "yellow"]
def detect_objects(image):
draw = ImageDraw.Draw(image)
detections = model(image)
for detection in detections.xyxy[0]:
x1, y1, x2, y2, p, category_id = detection
x1, y1, x2, y2, category_id = int(x1), int(y1), int(x2), int(y2), int(category_id)
draw.rectangle((x1, y1, x2, y2), outline=colors[category_id], width=4)
draw.text((x1, y1), labels[category_id], colors[category_id])
return image
demo = gr.Blocks()#(css=css)
title = '# 3D print failures detection App'
description = 'App for detect errors in the 3D printing'
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]
with demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Tabs():
with gr.TabItem('Image Upload'):
with gr.Row():
img_input = gr.Image(type='pil')
img_output= gr.Image()
#with gr.Row():
# example_images = gr.Dataset(components=[img_input],
# samples=[[path.as_posix()]
# for path in sorted(pathlib.Path('images').rglob('*.JPG'))])
img_button = gr.Button('Detect')
img_button.click(detect_objects,inputs=img_input,outputs=img_output)
if __name__ == "__main__":
demo.launch()