Javiai commited on
Commit
5bd9c6c
·
1 Parent(s): 54cde56

Update the labels in app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -11
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  import torch
3
  from PIL import ImageDraw
 
4
 
5
  # Model
6
  model_path = 'model_torch.pt'
@@ -17,14 +18,17 @@ def detect_objects(image):
17
 
18
  detections = model(image)
19
 
 
 
20
  for detection in detections.xyxy[0]:
21
 
22
  x1, y1, x2, y2, p, category_id = detection
23
  x1, y1, x2, y2, category_id = int(x1), int(y1), int(x2), int(y2), int(category_id)
24
  draw.rectangle((x1, y1, x2, y2), outline=colors[category_id], width=4)
25
  draw.text((x1, y1), labels[category_id], colors[category_id])
 
26
 
27
- return image
28
 
29
 
30
  demo = gr.Blocks()#(css=css)
@@ -32,8 +36,6 @@ demo = gr.Blocks()#(css=css)
32
  title = '# 3D print failures detection App'
33
  description = 'App for detect errors in the 3D printing'
34
 
35
- urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]
36
-
37
  with demo:
38
  gr.Markdown(title)
39
  gr.Markdown(description)
@@ -41,18 +43,20 @@ with demo:
41
  with gr.Tabs():
42
  with gr.TabItem('Image Upload'):
43
  with gr.Row():
44
- img_input = gr.Image(type='pil')
45
- img_output= gr.Image()
46
 
47
- #with gr.Row():
48
- # example_images = gr.Dataset(components=[img_input],
49
- # samples=[[path.as_posix()]
50
- # for path in sorted(pathlib.Path('images').rglob('*.JPG'))])
 
 
51
 
 
 
 
52
  img_button = gr.Button('Detect')
53
 
54
-
55
- img_button.click(detect_objects,inputs=img_input,outputs=img_output)
56
 
57
 
58
  if __name__ == "__main__":
 
1
  import gradio as gr
2
  import torch
3
  from PIL import ImageDraw
4
+ import pathlib
5
 
6
  # Model
7
  model_path = 'model_torch.pt'
 
18
 
19
  detections = model(image)
20
 
21
+ probabilities = {}
22
+
23
  for detection in detections.xyxy[0]:
24
 
25
  x1, y1, x2, y2, p, category_id = detection
26
  x1, y1, x2, y2, category_id = int(x1), int(y1), int(x2), int(y2), int(category_id)
27
  draw.rectangle((x1, y1, x2, y2), outline=colors[category_id], width=4)
28
  draw.text((x1, y1), labels[category_id], colors[category_id])
29
+ probabilities[labels[category_id]] = float(p)
30
 
31
+ return [image, probabilities]
32
 
33
 
34
  demo = gr.Blocks()#(css=css)
 
36
  title = '# 3D print failures detection App'
37
  description = 'App for detect errors in the 3D printing'
38
 
 
 
39
  with demo:
40
  gr.Markdown(title)
41
  gr.Markdown(description)
 
43
  with gr.Tabs():
44
  with gr.TabItem('Image Upload'):
45
  with gr.Row():
 
 
46
 
47
+ with gr.Column():
48
+ img_input = gr.Image(type='pil')
49
+ examples_images2 = gr.Examples(examples = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.jpg'))],
50
+ inputs=img_input)
51
+ labels_bars = gr.Label(label = "Categories")
52
+ print(labels_bars)
53
 
54
+ with gr.Column():
55
+ img_output= gr.Image()
56
+
57
  img_button = gr.Button('Detect')
58
 
59
+ img_button.click(detect_objects,inputs=img_input,outputs=[img_output, labels_bars])
 
60
 
61
 
62
  if __name__ == "__main__":