import gradio as gr import torch from PIL import ImageDraw import pathlib # Model model_path = 'model_torch.pt' model = torch.hub.load('Ultralytics/yolov5', 'custom', model_path, verbose = False) model.eval() labels = model.names colors = ["red", "blue", "green", "yellow"] def detect_objects(image): draw = ImageDraw.Draw(image) detections = model(image) probabilities = {} for detection in detections.xyxy[0]: x1, y1, x2, y2, p, category_id = detection x1, y1, x2, y2, category_id = int(x1), int(y1), int(x2), int(y2), int(category_id) draw.rectangle((x1, y1, x2, y2), outline=colors[category_id], width=4) draw.text((x1, y1), labels[category_id], colors[category_id]) probabilities[labels[category_id]] = float(p) return [image, probabilities] demo = gr.Blocks()#(css=css) title = '# 3D print failures detection App' description = 'App for detect errors in the 3D printing' with demo: gr.Markdown(title) gr.Markdown(description) with gr.Tabs(): #Image static with gr.TabItem('Image Upload'): with gr.Row(): with gr.Column(): img_input = gr.Image(type='pil') examples_images2 = gr.Examples(examples = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.jpg'))], inputs=img_input) labels_bars = gr.Label(label = "Categories") print(labels_bars) with gr.Column(): img_output= gr.Image() img_button = gr.Button('Detect') img_button.click(detect_objects,inputs=img_input,outputs=[img_output, labels_bars]) #Image static with gr.TabItem('Webcam'): with gr.Row(): with gr.Column(): webcam_input = gr.Image(shape=(320,240), source='webcam', type="pil", ) webcam_output = gr.Image() with gr.Column(): labels_bars2 = gr.Label(label = "Categories") webcam_button = gr.Button('Detect') webcam_button.click(detect_objects,inputs=webcam_input,outputs=[webcam_output, labels_bars2]) if __name__ == "__main__": demo.launch()