Javiai's picture
try
cc3741b
raw
history blame
984 Bytes
from diffusers import AutoPipelineForText2Image
import torch
import gradio as gr
pipeline = AutoPipelineForText2Image.from_pretrained('dataautogpt3/OpenDalleV1.1', torch_dtype=torch.float16)
text0 = 'black fluffy gorgeous dangerous cat animal creature, large orange eyes, big fluffy ears, piercing gaze, full moon, dark ambiance, best quality, extremely detailed'
def generation(text):
image = pipeline(text).images[0]
return image
demo = gr.Blocks()
title = '# 3D print failures detection App'
description = 'App for detect errors in the 3D printing'
with demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
img_input = gr.Textbox ( label="Text 1",info="Initial text",lines=5,value=text0)
button = gr.Button(value="Reverse")
with gr.Row():
img_output= gr.Image()
button.click( generation, inputs=img_input, outputs=[img_output])
if __name__ == "__main__":
demo.launch()