Spaces:
Runtime error
Runtime error
import re | |
import streamlit as st | |
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
from datasets import load_dataset | |
import torch | |
import os | |
from PIL import Image | |
import PyPDF2 | |
from pypdf.errors import PdfReadError | |
from pypdf import PdfReader | |
import pypdfium2 as pdfium | |
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") | |
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") | |
device ="cpu" | |
model.to(device) | |
#create uploader | |
document = st.file_uploader(label="Upload the document you want to explore",type=["png",'jpg', "jpeg","pdf"]) | |
question = st.text_input(str("Insert here you question?")) | |
if document == None: | |
st.write("Please upload the document in the box above") | |
else: | |
try: | |
PdfReader(document) | |
pdf = pdfium.PdfDocument(document) | |
page = pdf.get_page(0) | |
pil_image = page.render(scale = 300/72).to_pil() | |
#st.image(pil_image, caption="Document uploaded", use_column_width=True) | |
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" | |
#question = "What's the total amount?" | |
prompt = task_prompt.replace("{user_input}", question) | |
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
pixel_values = processor(pil_image, return_tensors="pt").pixel_values | |
outputs = model.generate( | |
pixel_values.to(device), | |
decoder_input_ids=decoder_input_ids.to(device), | |
max_length=model.decoder.config.max_position_embeddings, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token | |
st.image(pil_image,"Document uploaded") | |
st.write(processor.token2json(sequence)) | |
print(processor.token2json(sequence)) | |
except PdfReadError: | |
#image = Image.open(document) | |
#st.image(document, caption="Document uploaded", use_column_width=False) | |
# prepare decoder inputs | |
document = Image.open(document) | |
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" | |
#question = "What's the total amount?" | |
prompt = task_prompt.replace("{user_input}", question) | |
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
pixel_values = processor(document, return_tensors="pt").pixel_values | |
outputs = model.generate( | |
pixel_values.to(device), | |
decoder_input_ids=decoder_input_ids.to(device), | |
max_length=model.decoder.config.max_position_embeddings, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token | |
st.image(document,"Document uploaded") | |
st.write(processor.token2json(sequence)) | |