import streamlit as st from PIL import Image import streamlit as st from transformers import pipeline import pandas as pd import plotly.express as px import matplotlib.pyplot as plt from pathlib import Path import base64 from st_pages import Page, add_page_title, show_pages from streamlit_extras.badges import badge import transformers model_name = 'Intel/neural-chat-7b-v3-1' model = transformers.AutoModelForCausalLM.from_pretrained(model_name) tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) def generate_response(system_input, user_input): # Format the input using the provided template prompt = f"### System:\n{system_input}\n### User:\n{user_input}\n### Assistant:\n" # Tokenize and encode the prompt inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False) # Generate a response outputs = model.generate(inputs, max_length=1000, num_return_sequences=1) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract only the assistant's response return response.split("### Assistant:\n")[-1] # Example usage system_input = "You are a employee in the customer succes department of a company called Retraced that works in sustainability and traceability" prompt = st.text_input(str("Insert here you prompt?")) response = generate_response(system_input, prompt) st.write(response)