import gradio as gr import edge_tts import asyncio import tempfile import os from huggingface_hub import InferenceClient import re from streaming_stt_nemo import Model import torch import random from openai import OpenAI import subprocess default_lang = "en" engines = { default_lang: Model(default_lang) } def transcribe(audio): if audio is None: return "" lang = "en" model = engines[lang] text = model.stt_file(audio)[0] return text HF_TOKEN = os.environ.get("HF_TOKEN", None) def client_fn(model): if "Llama 3 8B Service" in model: return OpenAI( base_url="http://52.76.81.56:60002/v1", api_key="token-abc123" ) elif "Llama" in model: return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") elif "Mistral" in model: return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2") elif "Phi" in model: return InferenceClient("microsoft/Phi-3-mini-4k-instruct") elif "Mixtral" in model: return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") else: return InferenceClient("microsoft/Phi-3-mini-4k-instruct") def randomize_seed_fn(seed: int) -> int: seed = random.randint(0, 999999) return seed system_instructions1 = """ [SYSTEM] You are OPTIMUS Prime a personal AI voice assistant, Created by Jaward. Keep conversation friendly, short, clear, and concise. Avoid unnecessary introductions and answer the user's questions directly. Respond in a normal, conversational manner while being friendly and helpful. Remember previous parts of the conversation and use that context in your responses. Your creator Jaward is an AI/ML Research Engineer at Linksoul AI. He is currently specializing in Artificial Intelligence (AI) research more specifically training and optimizing advance AI systems. He aspires to build not just human-like intelligence but AI Systems that augment human intelligence. He has contributed greatly to the opensource community with first-principles code implementations of AI/ML research papers. He did his first internship at Beijing Academy of Artificial Intelligence as an AI Researher where he contributed in cutting-edge AI research leading to him contributing to an insightful paper (AUTOAGENTS - A FRAMEWORK FOR AUTOMATIC AGENT GENERATION). The paper got accepted this year at IJCAI(International Joint Conference On AI). He is currently doing internship at LinkSoul AI - a small opensource AI Research startup in Beijing. [USER] """ conversation_history = [] def models(text, model="Llama 3B Service", seed=42): global conversation_history seed = int(randomize_seed_fn(seed)) generator = torch.Generator().manual_seed(seed) client = client_fn(model) if "Llama 3 8B Service" in model: messages = [ {"role": "system", "content": system_instructions1}, ] + conversation_history + [ {"role": "user", "content": text} ] completion = client.chat.completions.create( model="/data/shared/huggingface/hub/models--meta-llama--Meta-Llama-3-8B-Instruct/snapshots/c4a54320a52ed5f88b7a2f84496903ea4ff07b45/", messages=messages ) assistant_response = completion.choices[0].message.content # Update conversation history conversation_history.append({"role": "user", "content": text}) conversation_history.append({"role": "assistant", "content": assistant_response}) # Keep only the last 10 messages to avoid token limit issues if len(conversation_history) > 20: conversation_history = conversation_history[-20:] return assistant_response else: # For other models, we'll concatenate the conversation history into a single string history_text = "\n".join([f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}" for msg in conversation_history]) formatted_prompt = f"{system_instructions1}\n\nConversation history:\n{history_text}\n\nUser: {text}\nOPTIMUS:" generate_kwargs = dict( max_new_tokens=300, seed=seed ) stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: if not response.token.text == "": output += response.token.text # Update conversation history conversation_history.append({"role": "user", "content": text}) conversation_history.append({"role": "assistant", "content": output}) # Keep only the last 10 messages to avoid token limit issues if len(conversation_history) > 20: conversation_history = conversation_history[-20:] return output async def respond(audio, model, seed): if audio is None: return None user = transcribe(audio) if not user: return None reply = models(user, model, seed) communicate = edge_tts.Communicate(reply, voice="en-US-ChristopherNeural") with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return tmp_path # Supported languages for seamless-expressive LANGUAGE_CODES = { "English": "eng", "Spanish": "spa", "French": "fra", "German": "deu", "Italian": "ita", "Chinese": "cmn" } def translate_speech(audio_file, target_language): """ Translate input speech (audio file) to the specified target language. """ if audio_file is None: return None language_code = LANGUAGE_CODES[target_language] output_file = "translated_audio.wav" command = [ "expressivity_predict", audio_file, "--tgt_lang", language_code, "--model_name", "seamless_expressivity", "--vocoder_name", "vocoder_pretssel", "--gated-model-dir", "seamlessmodel", "--output_path", output_file ] subprocess.run(command, check=True) if os.path.exists(output_file): print(f"File created successfully: {output_file}") return output_file else: print(f"File not found: {output_file}") return None def clear_history(): global conversation_history conversation_history = [] return None, None, None, None def voice_assistant_tab(): return "#
Hello, I am Optimus Prime your personal AI voice assistant
" def speech_translation_tab(): return "#
Hear how you sound in another language
" with gr.Blocks(css="style.css") as demo: description = gr.Markdown("#
Hello, I am Optimus Prime your personal AI voice assistant
") with gr.Tabs() as tabs: with gr.TabItem("Voice Assistant") as voice_assistant: select = gr.Dropdown([ 'Llama 3 8B Service', 'Mixtral 8x7B', 'Llama 3 8B', 'Mistral 7B v0.3', 'Phi 3 mini', ], value="Llama 3 8B Service", label="Model" ) seed = gr.Slider( label="Seed", minimum=0, maximum=999999, step=1, value=0, visible=False ) input = gr.Audio(label="User", sources="microphone", type="filepath", waveform_options=False) output = gr.Audio(label="AI", type="filepath", interactive=False, autoplay=True, elem_classes="audio") gr.Interface( fn=respond, inputs=[input, select, seed], outputs=[output], live=True ) with gr.TabItem("Speech Translation") as speech_translation: input_audio = gr.Audio(label="User", sources="microphone", type="filepath", waveform_options=False) target_lang = gr.Dropdown( choices=list(LANGUAGE_CODES.keys()), value="Spanish", label="Target Language" ) output_audio = gr.Audio(label="Translated Audio", interactive=False, autoplay=True, elem_classes="audio") gr.Interface( fn=translate_speech, inputs=[input_audio, target_lang], outputs=[output_audio], live=True ) # clear_button = gr.Button("Clear") # clear_button.click( # fn=clear_history, # inputs=[], # outputs=[input, output, input_audio, output_audio], # api_name="clear" # ) voice_assistant.select(fn=voice_assistant_tab, inputs=None, outputs=description) speech_translation.select(fn=speech_translation_tab, inputs=None, outputs=description) if __name__ == "__main__": demo.queue(max_size=200).launch()