Spaces:
Running
Running
# %% | |
# Install necessary packages if not already installed | |
# pip install gradio yfinance prophet plotly matplotlib | |
import gradio as gr | |
import pandas as pd | |
import yfinance as yf | |
from datetime import datetime | |
from prophet import Prophet | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import matplotlib.pyplot as plt | |
import numpy as np | |
# Functions for calculating indicators (SMA, RSI, etc.) and generating trading signals | |
# (Reuse the code you've already written for technical indicators and forecasting) | |
def calculate_sma(df, window): | |
return df['Close'].rolling(window=window).mean() | |
def calculate_macd(df): | |
short_ema = df['Close'].ewm(span=12, adjust=False).mean() | |
long_ema = df['Close'].ewm(span=26, adjust=False).mean() | |
macd = short_ema - long_ema | |
signal = macd.ewm(span=9, adjust=False).mean() | |
return macd, signal | |
def calculate_rsi(df): | |
delta = df['Close'].diff() | |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean() | |
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean() | |
rs = gain / loss | |
rsi = 100 - (100 / (1 + rs)) | |
return rsi | |
def calculate_bollinger_bands(df): | |
middle_bb = df['Close'].rolling(window=20).mean() | |
upper_bb = middle_bb + 2 * df['Close'].rolling(window=20).std() | |
lower_bb = middle_bb - 2 * df['Close'].rolling(window=20).std() | |
return middle_bb, upper_bb, lower_bb | |
def calculate_stochastic_oscillator(df): | |
lowest_low = df['Low'].rolling(window=14).min() | |
highest_high = df['High'].rolling(window=14).max() | |
slowk = ((df['Close'] - lowest_low) / (highest_high - lowest_low)) * 100 | |
slowd = slowk.rolling(window=3).mean() | |
return slowk, slowd | |
def generate_trading_signals(df): | |
# Calculate Simple Moving Averages (SMA) | |
df['SMA_50'] = calculate_sma(df, 50) | |
df['SMA_200'] = calculate_sma(df, 200) | |
# Calculate other technical indicators | |
df['RSI'] = calculate_rsi(df) | |
df['MiddleBB'], df['UpperBB'], df['LowerBB'] = calculate_bollinger_bands(df) | |
df['SlowK'], df['SlowD'] = calculate_stochastic_oscillator(df) | |
# Generate trading signals | |
df['SMA_Signal'] = np.where(df['SMA_50'] > df['SMA_200'], 1, 0) | |
macd, signal = calculate_macd(df) | |
df['MACD_Signal'] = np.where((macd > signal.shift(1)) & (macd.shift(1) < signal), 1, 0) | |
df['RSI_Signal'] = np.where(df['RSI'] < 30, 1, 0) | |
df['RSI_Signal'] = np.where(df['RSI'] > 70, -1, df['RSI_Signal']) | |
df['BB_Signal'] = np.where(df['Close'] < df['LowerBB'], 1, 0) | |
df['BB_Signal'] = np.where(df['Close'] > df['UpperBB'], -1, df['BB_Signal']) | |
df['Stochastic_Signal'] = np.where((df['SlowK'] < 20) & (df['SlowD'] < 20), 1, 0) | |
df['Stochastic_Signal'] = np.where((df['SlowK'] > 80) & (df['SlowD'] > 80), -1, df['Stochastic_Signal']) | |
# Summing the values of each individual signal column | |
df['Combined_Signal'] = df[['SMA_Signal', 'MACD_Signal', 'RSI_Signal', 'BB_Signal', 'Stochastic_Signal']].sum(axis=1) | |
# %% | |
import plotly.graph_objects as go | |
def plot_combined_signals(df, ticker): | |
# Create a figure | |
fig = go.Figure() | |
# Add closing price trace | |
fig.add_trace(go.Scatter( | |
x=df.index, y=df['Close'], | |
mode='lines', | |
name='Closing Price', | |
line=dict(color='lightcoral', width=2) | |
)) | |
# Add buy signals | |
buy_signals = df[df['Combined_Signal'] >= 2] | |
fig.add_trace(go.Scatter( | |
x=buy_signals.index, y=buy_signals['Close'], | |
mode='markers', | |
marker=dict(symbol='triangle-up', size=10, color='lightgreen'), | |
name='Buy Signal' | |
)) | |
# Add sell signals | |
sell_signals = df[df['Combined_Signal'] <= -2] | |
fig.add_trace(go.Scatter( | |
x=sell_signals.index, y=sell_signals['Close'], | |
mode='markers', | |
marker=dict(symbol='triangle-down', size=10, color='lightsalmon'), | |
name='Sell Signal' | |
)) | |
# Add combined signal trace | |
fig.add_trace(go.Scatter( | |
x=df.index, y=df['Combined_Signal'], | |
mode='lines', | |
name='Combined Signal', | |
line=dict(color='deepskyblue', width=2), | |
yaxis='y2' | |
)) | |
# Update layout for secondary y-axis | |
fig.update_layout( | |
title=f'{ticker}: Stock Price and Combined Trading Signal (Last 60 Days)', | |
xaxis=dict(title='Date', gridcolor='gray', gridwidth=0.5), | |
yaxis=dict(title='Price', side='left', gridcolor='gray', gridwidth=0.5), | |
yaxis2=dict(title='Combined Signal', overlaying='y', side='right', showgrid=False), | |
plot_bgcolor='black', | |
paper_bgcolor='black', | |
font=dict(color='white'), | |
legend=dict(x=0.01, y=0.99, bgcolor='rgba(0,0,0,0)'), | |
hovermode='x unified' | |
) | |
return fig | |
# %% | |
def stock_analysis(ticker, start_date, end_date): | |
# Download stock data from Yahoo Finance | |
df = yf.download(ticker, start=start_date, end=end_date) | |
# Run your existing trading signals and indicators here | |
generate_trading_signals(df) | |
# Last 60 days | |
df_last_60 = df.tail(60) | |
# Plot trading signals using the improved function | |
fig_signals = plot_combined_signals(df_last_60, ticker) | |
# Combine the figures into HTML output | |
return fig_signals | |
# %% | |
# Define Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Stock Market Analysis App") | |
ticker_input = gr.Textbox(label="Enter Stock Ticker (e.g., AAPL, NVDA)", value="NVDA") | |
start_date_input = gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2022-01-01") | |
end_date_input = gr.Textbox(label="End Date (YYYY-MM-DD)", value=str(datetime.now().date())) | |
# Create a submit button that runs the stock analysis function | |
button = gr.Button("Analyze Stock") | |
# Outputs: Display results, charts | |
signals_output = gr.Plot(label="Trading Signals") | |
# Link button to function | |
button.click(stock_analysis, inputs=[ticker_input, start_date_input, end_date_input], outputs=[signals_output, forecast_output]) | |
# Launch the interface | |
demo.launch() | |