Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,21 @@
|
|
1 |
# %%
|
2 |
-
#
|
3 |
-
# pip install gradio yfinance prophet plotly matplotlib
|
4 |
-
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
import yfinance as yf
|
8 |
from datetime import datetime
|
9 |
-
import plotly.express as px
|
10 |
import plotly.graph_objects as go
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
import numpy as np
|
13 |
|
14 |
# Functions for calculating indicators (SMA, RSI, etc.) and generating trading signals
|
15 |
-
# (Reuse the code you've already written for technical indicators and forecasting)
|
16 |
|
17 |
def calculate_sma(df, window):
|
18 |
return df['Close'].rolling(window=window).mean()
|
19 |
|
|
|
|
|
|
|
|
|
20 |
def calculate_macd(df):
|
21 |
short_ema = df['Close'].ewm(span=12, adjust=False).mean()
|
22 |
long_ema = df['Close'].ewm(span=26, adjust=False).mean()
|
@@ -24,6 +23,7 @@ def calculate_macd(df):
|
|
24 |
signal = macd.ewm(span=9, adjust=False).mean()
|
25 |
return macd, signal
|
26 |
|
|
|
27 |
def calculate_rsi(df):
|
28 |
delta = df['Close'].diff()
|
29 |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
@@ -45,43 +45,81 @@ def calculate_stochastic_oscillator(df):
|
|
45 |
slowd = slowk.rolling(window=3).mean()
|
46 |
return slowk, slowd
|
47 |
|
48 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
# Calculate Simple Moving Averages (SMA)
|
51 |
-
df['SMA_50'] = calculate_sma(df, 50)
|
52 |
-
df['SMA_200'] = calculate_sma(df, 200)
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
df['RSI'] = calculate_rsi(df)
|
56 |
df['MiddleBB'], df['UpperBB'], df['LowerBB'] = calculate_bollinger_bands(df)
|
57 |
df['SlowK'], df['SlowD'] = calculate_stochastic_oscillator(df)
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Generate trading signals
|
60 |
-
df['SMA_Signal'] = np.where(df['
|
61 |
|
62 |
macd, signal = calculate_macd(df)
|
63 |
-
df['MACD_Signal'] = np.
|
|
|
|
|
|
|
64 |
|
65 |
-
df['RSI_Signal'] = np.where(df['RSI'] <
|
66 |
-
df['RSI_Signal'] = np.where(df['RSI'] >
|
67 |
|
68 |
-
df['BB_Signal'] = np.where(df['Close'] < df['LowerBB'],
|
69 |
df['BB_Signal'] = np.where(df['Close'] > df['UpperBB'], -1, df['BB_Signal'])
|
70 |
|
71 |
-
df['Stochastic_Signal'] = np.where((df['SlowK'] <
|
72 |
-
df['Stochastic_Signal'] = np.where((df['SlowK'] >
|
73 |
-
|
74 |
-
|
75 |
-
df['Combined_Signal'] = df[['SMA_Signal', 'MACD_Signal', 'RSI_Signal', 'BB_Signal', 'Stochastic_Signal']].sum(axis=1)
|
76 |
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
|
|
|
|
|
|
|
|
79 |
|
|
|
80 |
|
81 |
|
82 |
# %%
|
83 |
-
import plotly.graph_objects as go
|
84 |
-
|
85 |
def plot_combined_signals(df, ticker):
|
86 |
# Create a figure
|
87 |
fig = go.Figure()
|
@@ -104,7 +142,7 @@ def plot_combined_signals(df, ticker):
|
|
104 |
))
|
105 |
|
106 |
# Add sell signals
|
107 |
-
sell_signals = df[df['Combined_Signal'] <= -
|
108 |
fig.add_trace(go.Scatter(
|
109 |
x=sell_signals.index, y=sell_signals['Close'],
|
110 |
mode='markers',
|
@@ -112,7 +150,7 @@ def plot_combined_signals(df, ticker):
|
|
112 |
name='Sell Signal'
|
113 |
))
|
114 |
|
115 |
-
#
|
116 |
fig.add_trace(go.Scatter(
|
117 |
x=df.index, y=df['Combined_Signal'],
|
118 |
mode='lines',
|
@@ -121,41 +159,126 @@ def plot_combined_signals(df, ticker):
|
|
121 |
yaxis='y2'
|
122 |
))
|
123 |
|
124 |
-
# Update layout
|
125 |
fig.update_layout(
|
126 |
title=f'{ticker}: Stock Price and Combined Trading Signal (Last 60 Days)',
|
127 |
-
xaxis=dict(title='Date'
|
128 |
-
yaxis=dict(title='Price', side='left'
|
129 |
yaxis2=dict(title='Combined Signal', overlaying='y', side='right', showgrid=False),
|
130 |
plot_bgcolor='black',
|
131 |
paper_bgcolor='black',
|
132 |
-
font=dict(color='white')
|
133 |
-
legend=dict(x=0.01, y=0.99, bgcolor='rgba(0,0,0,0)'),
|
134 |
-
hovermode='x unified'
|
135 |
)
|
136 |
|
137 |
return fig
|
138 |
|
139 |
-
|
140 |
# %%
|
141 |
def stock_analysis(ticker, start_date, end_date):
|
142 |
# Download stock data from Yahoo Finance
|
143 |
df = yf.download(ticker, start=start_date, end=end_date)
|
144 |
|
145 |
-
#
|
146 |
generate_trading_signals(df)
|
147 |
|
148 |
# Last 60 days
|
149 |
df_last_60 = df.tail(60)
|
150 |
|
151 |
-
# Plot
|
152 |
fig_signals = plot_combined_signals(df_last_60, ticker)
|
153 |
|
154 |
-
|
155 |
-
# Combine the figures into HTML output
|
156 |
return fig_signals
|
157 |
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
# %%
|
160 |
# Define Gradio interface
|
161 |
with gr.Blocks() as demo:
|
@@ -169,12 +292,16 @@ with gr.Blocks() as demo:
|
|
169 |
button = gr.Button("Analyze Stock")
|
170 |
|
171 |
# Outputs: Display results, charts
|
172 |
-
|
|
|
|
|
173 |
|
174 |
# Link button to function
|
175 |
-
button.click(stock_analysis, inputs=[ticker_input, start_date_input, end_date_input],
|
|
|
176 |
|
177 |
# Launch the interface
|
178 |
demo.launch()
|
179 |
|
180 |
|
|
|
|
1 |
# %%
|
2 |
+
# %%
|
|
|
|
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
import yfinance as yf
|
6 |
from datetime import datetime
|
|
|
7 |
import plotly.graph_objects as go
|
|
|
8 |
import numpy as np
|
9 |
|
10 |
# Functions for calculating indicators (SMA, RSI, etc.) and generating trading signals
|
|
|
11 |
|
12 |
def calculate_sma(df, window):
|
13 |
return df['Close'].rolling(window=window).mean()
|
14 |
|
15 |
+
def calculate_ema(df, window):
|
16 |
+
return df['Close'].ewm(span=window, adjust=False).mean()
|
17 |
+
|
18 |
+
|
19 |
def calculate_macd(df):
|
20 |
short_ema = df['Close'].ewm(span=12, adjust=False).mean()
|
21 |
long_ema = df['Close'].ewm(span=26, adjust=False).mean()
|
|
|
23 |
signal = macd.ewm(span=9, adjust=False).mean()
|
24 |
return macd, signal
|
25 |
|
26 |
+
|
27 |
def calculate_rsi(df):
|
28 |
delta = df['Close'].diff()
|
29 |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
|
|
45 |
slowd = slowk.rolling(window=3).mean()
|
46 |
return slowk, slowd
|
47 |
|
48 |
+
def calculate_atr(df, window=14):
|
49 |
+
high_low = df['High'] - df['Low']
|
50 |
+
high_close = np.abs(df['High'] - df['Close'].shift())
|
51 |
+
low_close = np.abs(df['Low'] - df['Close'].shift())
|
52 |
+
tr = high_low.combine(high_close, max).combine(low_close, max)
|
53 |
+
atr = tr.rolling(window=window).mean()
|
54 |
+
return atr
|
55 |
+
|
56 |
+
def calculate_cmf(df, window=20):
|
57 |
+
mfv = ((df['Close'] - df['Low']) - (df['High'] - df['Close'])) / (df['High'] - df['Low']) * df['Volume']
|
58 |
+
cmf = mfv.rolling(window=window).sum() / df['Volume'].rolling(window=window).sum()
|
59 |
+
return cmf
|
60 |
+
|
61 |
+
def calculate_cci(df, window=20):
|
62 |
+
"""Calculate Commodity Channel Index (CCI)."""
|
63 |
+
typical_price = (df['High'] + df['Low'] + df['Close']) / 3
|
64 |
+
sma = typical_price.rolling(window=window).mean()
|
65 |
+
mean_deviation = (typical_price - sma).abs().rolling(window=window).mean()
|
66 |
+
cci = (typical_price - sma) / (0.015 * mean_deviation)
|
67 |
+
return cci
|
68 |
|
|
|
|
|
|
|
69 |
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def generate_trading_signals(df):
|
74 |
+
# Calculate various indicators
|
75 |
+
df['SMA_30'] = calculate_sma(df, 30)
|
76 |
+
df['SMA_100'] = calculate_sma(df, 100)
|
77 |
+
df['EMA_12'] = calculate_ema(df, 12)
|
78 |
+
df['EMA_26'] = calculate_ema(df, 26)
|
79 |
df['RSI'] = calculate_rsi(df)
|
80 |
df['MiddleBB'], df['UpperBB'], df['LowerBB'] = calculate_bollinger_bands(df)
|
81 |
df['SlowK'], df['SlowD'] = calculate_stochastic_oscillator(df)
|
82 |
+
df['ATR'] = calculate_atr(df)
|
83 |
+
df['CMF'] = calculate_cmf(df)
|
84 |
+
df['CCI'] = calculate_cci(df)
|
85 |
+
|
86 |
+
|
87 |
|
88 |
# Generate trading signals
|
89 |
+
df['SMA_Signal'] = np.where(df['SMA_30'] > df['SMA_100'], 1, 0)
|
90 |
|
91 |
macd, signal = calculate_macd(df)
|
92 |
+
df['MACD_Signal'] = np.select([(macd > signal) & (macd.shift(1) <= signal.shift(1)),
|
93 |
+
(macd < signal) & (macd.shift(1) >= signal.shift(1))],[1, -1], default=0)
|
94 |
+
|
95 |
+
|
96 |
|
97 |
+
df['RSI_Signal'] = np.where(df['RSI'] < 20, 1, 0)
|
98 |
+
df['RSI_Signal'] = np.where(df['RSI'] > 90, -1, df['RSI_Signal'])
|
99 |
|
100 |
+
df['BB_Signal'] = np.where(df['Close'] < df['LowerBB'], 0, 0)
|
101 |
df['BB_Signal'] = np.where(df['Close'] > df['UpperBB'], -1, df['BB_Signal'])
|
102 |
|
103 |
+
df['Stochastic_Signal'] = np.where((df['SlowK'] < 10) & (df['SlowD'] < 15), 1, 0)
|
104 |
+
df['Stochastic_Signal'] = np.where((df['SlowK'] > 90) & (df['SlowD'] > 85), -1, df['Stochastic_Signal'])
|
105 |
+
|
106 |
+
df['CMF_Signal'] = np.where(df['CMF'] > 0.3, -1, np.where(df['CMF'] < -0.3, 1, 0))
|
|
|
107 |
|
108 |
+
|
109 |
+
df['CCI_Signal'] = np.where(df['CCI'] < -180, 1, 0)
|
110 |
+
df['CCI_Signal'] = np.where(df['CCI'] > 150, -1, df['CCI_Signal'])
|
111 |
+
|
112 |
|
113 |
|
114 |
+
# Combined signal for stronger buy/sell points
|
115 |
+
df['Combined_Signal'] = df[['RSI_Signal', 'BB_Signal',
|
116 |
+
'Stochastic_Signal', 'CMF_Signal',
|
117 |
+
'CCI_Signal']].sum(axis=1)
|
118 |
|
119 |
+
return df
|
120 |
|
121 |
|
122 |
# %%
|
|
|
|
|
123 |
def plot_combined_signals(df, ticker):
|
124 |
# Create a figure
|
125 |
fig = go.Figure()
|
|
|
142 |
))
|
143 |
|
144 |
# Add sell signals
|
145 |
+
sell_signals = df[df['Combined_Signal'] <= -3]
|
146 |
fig.add_trace(go.Scatter(
|
147 |
x=sell_signals.index, y=sell_signals['Close'],
|
148 |
mode='markers',
|
|
|
150 |
name='Sell Signal'
|
151 |
))
|
152 |
|
153 |
+
# Combined signal trace
|
154 |
fig.add_trace(go.Scatter(
|
155 |
x=df.index, y=df['Combined_Signal'],
|
156 |
mode='lines',
|
|
|
159 |
yaxis='y2'
|
160 |
))
|
161 |
|
162 |
+
# Update layout
|
163 |
fig.update_layout(
|
164 |
title=f'{ticker}: Stock Price and Combined Trading Signal (Last 60 Days)',
|
165 |
+
xaxis=dict(title='Date'),
|
166 |
+
yaxis=dict(title='Price', side='left'),
|
167 |
yaxis2=dict(title='Combined Signal', overlaying='y', side='right', showgrid=False),
|
168 |
plot_bgcolor='black',
|
169 |
paper_bgcolor='black',
|
170 |
+
font=dict(color='white')
|
|
|
|
|
171 |
)
|
172 |
|
173 |
return fig
|
174 |
|
|
|
175 |
# %%
|
176 |
def stock_analysis(ticker, start_date, end_date):
|
177 |
# Download stock data from Yahoo Finance
|
178 |
df = yf.download(ticker, start=start_date, end=end_date)
|
179 |
|
180 |
+
# Generate signals
|
181 |
generate_trading_signals(df)
|
182 |
|
183 |
# Last 60 days
|
184 |
df_last_60 = df.tail(60)
|
185 |
|
186 |
+
# Plot signals
|
187 |
fig_signals = plot_combined_signals(df_last_60, ticker)
|
188 |
|
|
|
|
|
189 |
return fig_signals
|
190 |
|
191 |
|
192 |
+
|
193 |
+
|
194 |
+
# %%
|
195 |
+
def plot_individual_signals(df, ticker):
|
196 |
+
# Create a figure
|
197 |
+
fig = go.Figure()
|
198 |
+
fig.add_trace(go.Scatter(
|
199 |
+
x=df.index, y=df['Close'],
|
200 |
+
mode='lines',
|
201 |
+
name='Closing Price',
|
202 |
+
line=dict(color='lightcoral', width=2)
|
203 |
+
))
|
204 |
+
|
205 |
+
# Add buy/sell signals for each indicator
|
206 |
+
signal_names = ['RSI_Signal', 'BB_Signal',
|
207 |
+
'Stochastic_Signal', 'CMF_Signal',
|
208 |
+
'CCI_Signal']
|
209 |
+
|
210 |
+
for signal in signal_names:
|
211 |
+
buy_signals = df[df[signal] == 1]
|
212 |
+
sell_signals = df[df[signal] == -1]
|
213 |
+
|
214 |
+
fig.add_trace(go.Scatter(
|
215 |
+
x=buy_signals.index, y=buy_signals['Close'],
|
216 |
+
mode='markers',
|
217 |
+
marker=dict(symbol='triangle-up', size=10, color='lightgreen'),
|
218 |
+
name=f'{signal} Buy Signal'
|
219 |
+
))
|
220 |
+
|
221 |
+
fig.add_trace(go.Scatter(
|
222 |
+
x=sell_signals.index, y=sell_signals['Close'],
|
223 |
+
mode='markers',
|
224 |
+
marker=dict(symbol='triangle-down', size=10, color='lightsalmon'),
|
225 |
+
name=f'{signal} Sell Signal'
|
226 |
+
))
|
227 |
+
|
228 |
+
fig.update_layout(
|
229 |
+
title=f'{ticker}: Individual Trading Signals',
|
230 |
+
xaxis=dict(title='Date'),
|
231 |
+
yaxis=dict(title='Price', side='left'),
|
232 |
+
plot_bgcolor='black',
|
233 |
+
paper_bgcolor='black',
|
234 |
+
font=dict(color='white')
|
235 |
+
)
|
236 |
+
|
237 |
+
return fig
|
238 |
+
|
239 |
+
|
240 |
+
def display_signals(df):
|
241 |
+
# Create a signals DataFrame
|
242 |
+
signals_df = df[['Close', 'SMA_Signal', 'MACD_Signal', 'RSI_Signal',
|
243 |
+
'BB_Signal', 'Stochastic_Signal', 'ATR_Signal',
|
244 |
+
'CMF_Signal', 'CCI_Signal']].copy()
|
245 |
+
|
246 |
+
# The Date is the index, so we don't need to add it as a column
|
247 |
+
signals_df.index.name = 'Date' # Name the index for better readability
|
248 |
+
|
249 |
+
# Replace signal values with 'Buy', 'Sell', or 'Hold'
|
250 |
+
for column in signals_df.columns:
|
251 |
+
signals_df[column] = signals_df[column].replace(
|
252 |
+
{1: 'Buy', -1: 'Sell', 0: 'Hold'}
|
253 |
+
)
|
254 |
+
|
255 |
+
return signals_df
|
256 |
+
|
257 |
+
def stock_analysis(ticker, start_date, end_date):
|
258 |
+
# Download stock data from Yahoo Finance
|
259 |
+
df = yf.download(ticker, start=start_date, end=end_date)
|
260 |
+
|
261 |
+
# Generate signals
|
262 |
+
df = generate_trading_signals(df)
|
263 |
+
|
264 |
+
# Last 60 days for plotting
|
265 |
+
df_last_60 = df.tail(60)
|
266 |
+
|
267 |
+
# Plot combined signals
|
268 |
+
fig_signals = plot_combined_signals(df_last_60, ticker)
|
269 |
+
|
270 |
+
# Plot individual signals
|
271 |
+
fig_individual_signals = plot_individual_signals(df_last_60, ticker)
|
272 |
+
|
273 |
+
# Display signals DataFrame
|
274 |
+
signals_df = df_last_60[['Close', 'SMA_Signal', 'MACD_Signal', 'RSI_Signal', 'BB_Signal',
|
275 |
+
'Stochastic_Signal', 'ATR_Signal', 'CMF_Signal',
|
276 |
+
'CCI_Signal']]
|
277 |
+
|
278 |
+
return fig_signals, fig_individual_signals
|
279 |
+
|
280 |
+
|
281 |
+
|
282 |
# %%
|
283 |
# Define Gradio interface
|
284 |
with gr.Blocks() as demo:
|
|
|
292 |
button = gr.Button("Analyze Stock")
|
293 |
|
294 |
# Outputs: Display results, charts
|
295 |
+
combined_signals_output = gr.Plot(label="Combined Trading Signals")
|
296 |
+
individual_signals_output = gr.Plot(label="Individual Trading Signals")
|
297 |
+
#signals_df_output = gr.Dataframe(label="Buy/Sell Signals")
|
298 |
|
299 |
# Link button to function
|
300 |
+
button.click(stock_analysis, inputs=[ticker_input, start_date_input, end_date_input],
|
301 |
+
outputs=[combined_signals_output, individual_signals_output])
|
302 |
|
303 |
# Launch the interface
|
304 |
demo.launch()
|
305 |
|
306 |
|
307 |
+
|