Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,16 @@
|
|
1 |
-
# %%
|
2 |
-
# %%
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
import yfinance as yf
|
6 |
-
from datetime import datetime
|
7 |
import plotly.graph_objects as go
|
8 |
import numpy as np
|
9 |
|
10 |
-
# Functions for calculating indicators (
|
11 |
-
|
12 |
def calculate_sma(df, window):
|
13 |
return df['Close'].rolling(window=window).mean()
|
14 |
|
15 |
def calculate_ema(df, window):
|
16 |
return df['Close'].ewm(span=window, adjust=False).mean()
|
17 |
|
18 |
-
|
19 |
def calculate_macd(df):
|
20 |
short_ema = df['Close'].ewm(span=12, adjust=False).mean()
|
21 |
long_ema = df['Close'].ewm(span=26, adjust=False).mean()
|
@@ -23,7 +18,6 @@ def calculate_macd(df):
|
|
23 |
signal = macd.ewm(span=9, adjust=False).mean()
|
24 |
return macd, signal
|
25 |
|
26 |
-
|
27 |
def calculate_rsi(df):
|
28 |
delta = df['Close'].diff()
|
29 |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
@@ -45,23 +39,18 @@ def calculate_stochastic_oscillator(df):
|
|
45 |
slowd = slowk.rolling(window=3).mean()
|
46 |
return slowk, slowd
|
47 |
|
48 |
-
|
49 |
-
|
50 |
def calculate_cmf(df, window=20):
|
51 |
mfv = ((df['Close'] - df['Low']) - (df['High'] - df['Close'])) / (df['High'] - df['Low']) * df['Volume']
|
52 |
cmf = mfv.rolling(window=window).sum() / df['Volume'].rolling(window=window).sum()
|
53 |
return cmf
|
54 |
|
55 |
def calculate_cci(df, window=20):
|
56 |
-
"""Calculate Commodity Channel Index (CCI)."""
|
57 |
typical_price = (df['High'] + df['Low'] + df['Close']) / 3
|
58 |
sma = typical_price.rolling(window=window).mean()
|
59 |
mean_deviation = (typical_price - sma).abs().rolling(window=window).mean()
|
60 |
cci = (typical_price - sma) / (0.015 * mean_deviation)
|
61 |
return cci
|
62 |
|
63 |
-
|
64 |
-
|
65 |
def generate_trading_signals(df):
|
66 |
# Calculate various indicators
|
67 |
df['SMA_30'] = calculate_sma(df, 30)
|
@@ -74,228 +63,332 @@ def generate_trading_signals(df):
|
|
74 |
df['CMF'] = calculate_cmf(df)
|
75 |
df['CCI'] = calculate_cci(df)
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
df['SMA_Signal'] = np.where(df['
|
|
|
81 |
|
82 |
macd, signal = calculate_macd(df)
|
|
|
|
|
83 |
df['MACD_Signal'] = np.select([(macd > signal) & (macd.shift(1) <= signal.shift(1)),
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
# Modified RSI Signals (tighter thresholds)
|
88 |
-
df['RSI_Signal'] = np.where(df['RSI'] < 12, 1, 0) # Changed from 20 to 15
|
89 |
-
df['RSI_Signal'] = np.where(df['RSI'] > 95, -1, df['RSI_Signal']) # Changed from 90 to 95
|
90 |
|
|
|
|
|
|
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
buffer_percentage = 0.01 # 1% buffer
|
95 |
-
|
96 |
-
# Buy signal: Price below LowerBB for 2 consecutive periods with buffer
|
97 |
df['BB_Signal'] = np.where(
|
98 |
(df['Close'] < df['LowerBB'] * (1 - buffer_percentage)) &
|
99 |
(df['Close'].shift(1) < df['LowerBB'].shift(1) * (1 - buffer_percentage)) &
|
100 |
(df['Close'].shift(2) < df['LowerBB'].shift(2) * (1 - buffer_percentage)), 1, 0
|
101 |
)
|
102 |
-
|
103 |
-
# Sell signal: Price above UpperBB for 2 consecutive periods with buffer
|
104 |
df['BB_Signal'] = np.where(
|
105 |
(df['Close'] > df['UpperBB'] * (1 + buffer_percentage)) &
|
106 |
(df['Close'].shift(1) > df['UpperBB'].shift(1) * (1 + buffer_percentage)) &
|
107 |
(df['Close'].shift(2) > df['UpperBB'].shift(2) * (1 + buffer_percentage)), -1, df['BB_Signal']
|
108 |
)
|
109 |
-
|
110 |
|
111 |
-
#
|
112 |
df['Stochastic_Signal'] = np.where((df['SlowK'] < 5) & (df['SlowD'] < 5), 1, 0)
|
113 |
df['Stochastic_Signal'] = np.where((df['SlowK'] > 99) & (df['SlowD'] > 95), -1, df['Stochastic_Signal'])
|
114 |
|
115 |
-
#
|
116 |
-
df['CMF_Signal'] = np.where(df['CMF'] > 0.4, -1, np.where(df['CMF'] < -0.4, 1, 0))
|
117 |
|
118 |
-
#
|
119 |
-
df['CCI_Signal'] = np.where(df['CCI'] < -195, 1, 0)
|
120 |
-
df['CCI_Signal'] = np.where(df['CCI'] > 195, -1, df['CCI_Signal'])
|
121 |
|
122 |
-
#
|
123 |
df['Combined_Signal'] = df[['RSI_Signal', 'BB_Signal',
|
124 |
'Stochastic_Signal', 'CMF_Signal',
|
125 |
'CCI_Signal', 'MACD_Signal']].sum(axis=1)
|
126 |
|
127 |
return df
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
# Create a figure
|
132 |
fig = go.Figure()
|
133 |
-
|
134 |
-
#
|
135 |
fig.add_trace(go.Scatter(
|
136 |
-
x=df.index,
|
|
|
137 |
mode='lines',
|
138 |
-
name='
|
139 |
-
line=dict(color='
|
|
|
140 |
))
|
141 |
-
|
142 |
-
# Add
|
143 |
-
buy_signals = df[df['Combined_Signal'] >= 3]
|
144 |
fig.add_trace(go.Scatter(
|
145 |
-
x=
|
146 |
-
mode='
|
147 |
-
|
148 |
-
|
149 |
))
|
150 |
-
|
151 |
-
# Add sell signals
|
152 |
-
sell_signals = df[df['Combined_Signal'] <= -2]
|
153 |
fig.add_trace(go.Scatter(
|
154 |
-
x=
|
155 |
-
mode='
|
156 |
-
|
157 |
-
|
158 |
))
|
159 |
|
160 |
-
#
|
161 |
fig.add_trace(go.Scatter(
|
162 |
-
x=df.index, y=df['
|
163 |
-
mode='lines',
|
164 |
-
name='
|
165 |
-
line=dict(color='
|
166 |
-
|
167 |
))
|
168 |
-
|
169 |
-
# Update layout
|
170 |
-
fig.update_layout(
|
171 |
-
title=f'{ticker}: 360 Stock Price and Combined Trading Signal',
|
172 |
-
xaxis=dict(title='Date'),
|
173 |
-
yaxis=dict(title='Price', side='left'),
|
174 |
-
yaxis2=dict(title='Combined Signal', overlaying='y', side='right', showgrid=False),
|
175 |
-
plot_bgcolor='black',
|
176 |
-
paper_bgcolor='black',
|
177 |
-
font=dict(color='white')
|
178 |
-
)
|
179 |
-
|
180 |
-
return fig
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
# %%
|
186 |
-
def plot_individual_signals(df, ticker):
|
187 |
-
# Create a figure
|
188 |
-
fig = go.Figure()
|
189 |
fig.add_trace(go.Scatter(
|
190 |
-
x=df.index, y=df['
|
191 |
-
mode='lines',
|
192 |
-
name='
|
193 |
-
line=dict(color='
|
|
|
|
|
|
|
194 |
))
|
195 |
|
196 |
-
#
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
201 |
for signal in signal_names:
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
fig.add_trace(go.Scatter(
|
206 |
-
x=
|
|
|
207 |
mode='markers',
|
208 |
-
marker=dict(symbol='triangle-up', size=10, color='
|
209 |
-
name=
|
|
|
|
|
210 |
))
|
211 |
|
|
|
|
|
|
|
212 |
fig.add_trace(go.Scatter(
|
213 |
-
x=
|
|
|
214 |
mode='markers',
|
215 |
-
marker=dict(symbol='triangle-down', size=10, color='
|
216 |
-
name=
|
|
|
|
|
217 |
))
|
218 |
|
|
|
219 |
fig.update_layout(
|
220 |
-
title=
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
)
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
{1: 'Buy', -1: 'Sell', 0: 'Hold'}
|
244 |
)
|
|
|
|
|
|
|
245 |
|
246 |
-
return signals_df
|
247 |
-
|
248 |
-
# Define the stock analysis function (keep only one version)
|
249 |
def stock_analysis(ticker, start_date, end_date):
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
-
#
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
|
|
273 |
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
gr.Markdown("## 360 Stock Market Analysis")
|
283 |
-
|
284 |
-
ticker_input = gr.Textbox(label="Enter Stock Ticker (e.g., AAPL, NVDA)", value="NVDA")
|
285 |
-
start_date_input = gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2022-01-01")
|
286 |
-
end_date_input = gr.Textbox(label="End Date (YYYY-MM-DD)", value="2023-01-01") # Fixed end date
|
287 |
-
|
288 |
-
# Create a submit button that runs the stock analysis function
|
289 |
-
button = gr.Button("Analyze Stock")
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
outputs=[individual_signals_output,signals_df_output])
|
299 |
|
300 |
# Launch the interface
|
301 |
-
demo.launch()
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import yfinance as yf
|
|
|
4 |
import plotly.graph_objects as go
|
5 |
import numpy as np
|
6 |
|
7 |
+
# Functions for calculating indicators (keeping these unchanged)
|
|
|
8 |
def calculate_sma(df, window):
|
9 |
return df['Close'].rolling(window=window).mean()
|
10 |
|
11 |
def calculate_ema(df, window):
|
12 |
return df['Close'].ewm(span=window, adjust=False).mean()
|
13 |
|
|
|
14 |
def calculate_macd(df):
|
15 |
short_ema = df['Close'].ewm(span=12, adjust=False).mean()
|
16 |
long_ema = df['Close'].ewm(span=26, adjust=False).mean()
|
|
|
18 |
signal = macd.ewm(span=9, adjust=False).mean()
|
19 |
return macd, signal
|
20 |
|
|
|
21 |
def calculate_rsi(df):
|
22 |
delta = df['Close'].diff()
|
23 |
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
|
|
|
39 |
slowd = slowk.rolling(window=3).mean()
|
40 |
return slowk, slowd
|
41 |
|
|
|
|
|
42 |
def calculate_cmf(df, window=20):
|
43 |
mfv = ((df['Close'] - df['Low']) - (df['High'] - df['Close'])) / (df['High'] - df['Low']) * df['Volume']
|
44 |
cmf = mfv.rolling(window=window).sum() / df['Volume'].rolling(window=window).sum()
|
45 |
return cmf
|
46 |
|
47 |
def calculate_cci(df, window=20):
|
|
|
48 |
typical_price = (df['High'] + df['Low'] + df['Close']) / 3
|
49 |
sma = typical_price.rolling(window=window).mean()
|
50 |
mean_deviation = (typical_price - sma).abs().rolling(window=window).mean()
|
51 |
cci = (typical_price - sma) / (0.015 * mean_deviation)
|
52 |
return cci
|
53 |
|
|
|
|
|
54 |
def generate_trading_signals(df):
|
55 |
# Calculate various indicators
|
56 |
df['SMA_30'] = calculate_sma(df, 30)
|
|
|
63 |
df['CMF'] = calculate_cmf(df)
|
64 |
df['CCI'] = calculate_cci(df)
|
65 |
|
66 |
+
# Generate trading signals with stricter SMA threshold
|
67 |
+
# Making SMA threshold stricter - require 3% difference between SMAs
|
68 |
+
df['SMA_Diff_Pct'] = (df['SMA_30'] - df['SMA_100']) / df['SMA_100'] * 100
|
69 |
+
df['SMA_Signal'] = np.where(df['SMA_Diff_Pct'] > 30, 1, 0) # Buy when SMA_30 is 30% above SMA_100
|
70 |
+
df['SMA_Signal'] = np.where(df['SMA_Diff_Pct'] < -30, -1, df['SMA_Signal']) # Sell when SMA_30 is 30% below SMA_100
|
71 |
|
72 |
macd, signal = calculate_macd(df)
|
73 |
+
df['MACD'] = macd
|
74 |
+
df['MACD_Signal_Line'] = signal
|
75 |
df['MACD_Signal'] = np.select([(macd > signal) & (macd.shift(1) <= signal.shift(1)),
|
76 |
+
(macd < signal) & (macd.shift(1) >= signal.shift(1))], [1, -1], default=0)
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# RSI Signals
|
79 |
+
df['RSI_Signal'] = np.where(df['RSI'] < 12, 1, 0)
|
80 |
+
df['RSI_Signal'] = np.where(df['RSI'] > 95, -1, df['RSI_Signal'])
|
81 |
|
82 |
+
# Bollinger Bands with buffer
|
|
|
83 |
buffer_percentage = 0.01 # 1% buffer
|
|
|
|
|
84 |
df['BB_Signal'] = np.where(
|
85 |
(df['Close'] < df['LowerBB'] * (1 - buffer_percentage)) &
|
86 |
(df['Close'].shift(1) < df['LowerBB'].shift(1) * (1 - buffer_percentage)) &
|
87 |
(df['Close'].shift(2) < df['LowerBB'].shift(2) * (1 - buffer_percentage)), 1, 0
|
88 |
)
|
|
|
|
|
89 |
df['BB_Signal'] = np.where(
|
90 |
(df['Close'] > df['UpperBB'] * (1 + buffer_percentage)) &
|
91 |
(df['Close'].shift(1) > df['UpperBB'].shift(1) * (1 + buffer_percentage)) &
|
92 |
(df['Close'].shift(2) > df['UpperBB'].shift(2) * (1 + buffer_percentage)), -1, df['BB_Signal']
|
93 |
)
|
|
|
94 |
|
95 |
+
# Stochastic signals
|
96 |
df['Stochastic_Signal'] = np.where((df['SlowK'] < 5) & (df['SlowD'] < 5), 1, 0)
|
97 |
df['Stochastic_Signal'] = np.where((df['SlowK'] > 99) & (df['SlowD'] > 95), -1, df['Stochastic_Signal'])
|
98 |
|
99 |
+
# CMF Signals
|
100 |
+
df['CMF_Signal'] = np.where(df['CMF'] > 0.4, -1, np.where(df['CMF'] < -0.4, 1, 0))
|
101 |
|
102 |
+
# CCI Signals
|
103 |
+
df['CCI_Signal'] = np.where(df['CCI'] < -195, 1, 0)
|
104 |
+
df['CCI_Signal'] = np.where(df['CCI'] > 195, -1, df['CCI_Signal'])
|
105 |
|
106 |
+
# Combined signal (keeping for reference but not used in the output)
|
107 |
df['Combined_Signal'] = df[['RSI_Signal', 'BB_Signal',
|
108 |
'Stochastic_Signal', 'CMF_Signal',
|
109 |
'CCI_Signal', 'MACD_Signal']].sum(axis=1)
|
110 |
|
111 |
return df
|
112 |
|
113 |
+
def plot_simplified_signals(df, ticker):
|
114 |
+
# Create a figure with improved styling
|
|
|
115 |
fig = go.Figure()
|
116 |
+
|
117 |
+
# Use a line chart instead of candlestick for simplicity
|
118 |
fig.add_trace(go.Scatter(
|
119 |
+
x=df.index,
|
120 |
+
y=df['Close'],
|
121 |
mode='lines',
|
122 |
+
name='Price',
|
123 |
+
line=dict(color='#26a69a', width=2),
|
124 |
+
opacity=0.9
|
125 |
))
|
126 |
+
|
127 |
+
# Add SMA lines
|
|
|
128 |
fig.add_trace(go.Scatter(
|
129 |
+
x=df.index, y=df['SMA_30'],
|
130 |
+
mode='lines',
|
131 |
+
name='SMA 30',
|
132 |
+
line=dict(color='#42a5f5', width=1.5, dash='dot')
|
133 |
))
|
134 |
+
|
|
|
|
|
135 |
fig.add_trace(go.Scatter(
|
136 |
+
x=df.index, y=df['SMA_100'],
|
137 |
+
mode='lines',
|
138 |
+
name='SMA 100',
|
139 |
+
line=dict(color='#5e35b1', width=1.5, dash='dot')
|
140 |
))
|
141 |
|
142 |
+
# Add bollinger bands with lighter appearance
|
143 |
fig.add_trace(go.Scatter(
|
144 |
+
x=df.index, y=df['UpperBB'],
|
145 |
+
mode='lines',
|
146 |
+
name='Upper BB',
|
147 |
+
line=dict(color='rgba(250, 250, 250, 0.3)', width=1),
|
148 |
+
showlegend=True
|
149 |
))
|
150 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
fig.add_trace(go.Scatter(
|
152 |
+
x=df.index, y=df['LowerBB'],
|
153 |
+
mode='lines',
|
154 |
+
name='Lower BB',
|
155 |
+
line=dict(color='rgba(250, 250, 250, 0.3)', width=1),
|
156 |
+
fill='tonexty',
|
157 |
+
fillcolor='rgba(173, 216, 230, 0.1)',
|
158 |
+
showlegend=True
|
159 |
))
|
160 |
|
161 |
+
# Group signals by type to reduce legend clutter
|
162 |
+
buy_signals_df = pd.DataFrame(index=df.index)
|
163 |
+
sell_signals_df = pd.DataFrame(index=df.index)
|
164 |
+
|
165 |
+
signal_names = ['RSI_Signal', 'BB_Signal', 'Stochastic_Signal',
|
166 |
+
'CMF_Signal', 'CCI_Signal', 'MACD_Signal', 'SMA_Signal']
|
167 |
+
|
168 |
+
# Collect all buy and sell signals
|
169 |
for signal in signal_names:
|
170 |
+
buy_signals_df[signal] = np.where(df[signal] == 1, df['Close'], np.nan)
|
171 |
+
sell_signals_df[signal] = np.where(df[signal] == -1, df['Close'], np.nan)
|
172 |
+
|
173 |
+
# Add hover data
|
174 |
+
buy_hovers = []
|
175 |
+
for idx in buy_signals_df.index:
|
176 |
+
signals_on_day = [col.split('_')[0] for col in buy_signals_df.columns
|
177 |
+
if not pd.isna(buy_signals_df.loc[idx, col])]
|
178 |
+
if signals_on_day:
|
179 |
+
hover_text = f"Buy Signals: {', '.join(signals_on_day)}<br>Date: {idx.strftime('%Y-%m-%d')}<br>Price: ${df.loc[idx, 'Close']:.2f}"
|
180 |
+
buy_hovers.append((idx, df.loc[idx, 'Close'], hover_text))
|
181 |
+
|
182 |
+
sell_hovers = []
|
183 |
+
for idx in sell_signals_df.index:
|
184 |
+
signals_on_day = [col.split('_')[0] for col in sell_signals_df.columns
|
185 |
+
if not pd.isna(sell_signals_df.loc[idx, col])]
|
186 |
+
if signals_on_day:
|
187 |
+
hover_text = f"Sell Signals: {', '.join(signals_on_day)}<br>Date: {idx.strftime('%Y-%m-%d')}<br>Price: ${df.loc[idx, 'Close']:.2f}"
|
188 |
+
sell_hovers.append((idx, df.loc[idx, 'Close'], hover_text))
|
189 |
+
|
190 |
+
# Add buy signals (single trace for all buy signals)
|
191 |
+
if buy_hovers:
|
192 |
+
buy_x, buy_y, buy_texts = zip(*buy_hovers)
|
193 |
fig.add_trace(go.Scatter(
|
194 |
+
x=buy_x,
|
195 |
+
y=[y * 0.995 for y in buy_y], # Position slightly below price for visibility
|
196 |
mode='markers',
|
197 |
+
marker=dict(symbol='triangle-up', size=10, color='#00e676', line=dict(color='white', width=1)),
|
198 |
+
name='Buy Signals',
|
199 |
+
hoverinfo='text',
|
200 |
+
hovertext=buy_texts
|
201 |
))
|
202 |
|
203 |
+
# Add sell signals (single trace for all sell signals)
|
204 |
+
if sell_hovers:
|
205 |
+
sell_x, sell_y, sell_texts = zip(*sell_hovers)
|
206 |
fig.add_trace(go.Scatter(
|
207 |
+
x=sell_x,
|
208 |
+
y=[y * 1.005 for y in sell_y], # Position slightly above price for visibility
|
209 |
mode='markers',
|
210 |
+
marker=dict(symbol='triangle-down', size=10, color='#ff5252', line=dict(color='white', width=1)),
|
211 |
+
name='Sell Signals',
|
212 |
+
hoverinfo='text',
|
213 |
+
hovertext=sell_texts
|
214 |
))
|
215 |
|
216 |
+
# Improve the layout
|
217 |
fig.update_layout(
|
218 |
+
title=dict(
|
219 |
+
text=f'{ticker}: Technical Analysis & Trading Signals',
|
220 |
+
font=dict(size=24, color='white'),
|
221 |
+
x=0.5
|
222 |
+
),
|
223 |
+
xaxis=dict(
|
224 |
+
title='Date',
|
225 |
+
gridcolor='rgba(255, 255, 255, 0.1)',
|
226 |
+
linecolor='rgba(255, 255, 255, 0.2)'
|
227 |
+
),
|
228 |
+
yaxis=dict(
|
229 |
+
title='Price',
|
230 |
+
side='right',
|
231 |
+
gridcolor='rgba(255, 255, 255, 0.1)',
|
232 |
+
linecolor='rgba(255, 255, 255, 0.2)',
|
233 |
+
tickprefix='$'
|
234 |
+
),
|
235 |
+
plot_bgcolor='#1e1e1e',
|
236 |
+
paper_bgcolor='#1e1e1e',
|
237 |
+
font=dict(color='white'),
|
238 |
+
hovermode='closest',
|
239 |
+
legend=dict(
|
240 |
+
bgcolor='rgba(30, 30, 30, 0.8)',
|
241 |
+
bordercolor='rgba(255, 255, 255, 0.2)',
|
242 |
+
borderwidth=1,
|
243 |
+
font=dict(color='white', size=10),
|
244 |
+
orientation='h',
|
245 |
+
yanchor='bottom',
|
246 |
+
y=1.02,
|
247 |
+
xanchor='center',
|
248 |
+
x=0.5
|
249 |
+
),
|
250 |
+
margin=dict(l=50, r=50, b=100, t=100, pad=4)
|
251 |
)
|
252 |
+
|
253 |
+
# Add range selector for better time navigation
|
254 |
+
fig.update_xaxes(
|
255 |
+
rangeslider_visible=True,
|
256 |
+
rangeselector=dict(
|
257 |
+
buttons=list([
|
258 |
+
dict(count=1, label="1m", step="month", stepmode="backward"),
|
259 |
+
dict(count=3, label="3m", step="month", stepmode="backward"),
|
260 |
+
dict(count=6, label="6m", step="month", stepmode="backward"),
|
261 |
+
dict(count=1, label="YTD", step="year", stepmode="todate"),
|
262 |
+
dict(count=1, label="1y", step="year", stepmode="backward"),
|
263 |
+
dict(step="all")
|
264 |
+
]),
|
265 |
+
bgcolor='rgba(30, 30, 30, 0.8)',
|
266 |
+
activecolor='#536dfe',
|
267 |
+
font=dict(color='white')
|
|
|
268 |
)
|
269 |
+
)
|
270 |
+
|
271 |
+
return fig
|
272 |
|
|
|
|
|
|
|
273 |
def stock_analysis(ticker, start_date, end_date):
|
274 |
+
try:
|
275 |
+
# Download stock data from Yahoo Finance
|
276 |
+
df = yf.download(ticker, start=start_date, end=end_date)
|
277 |
+
|
278 |
+
# Check if data was retrieved
|
279 |
+
if df.empty:
|
280 |
+
fig = go.Figure()
|
281 |
+
fig.add_annotation(
|
282 |
+
text="No data found for this ticker and date range",
|
283 |
+
xref="paper", yref="paper",
|
284 |
+
x=0.5, y=0.5,
|
285 |
+
showarrow=False,
|
286 |
+
font=dict(color="white", size=16)
|
287 |
+
)
|
288 |
+
fig.update_layout(
|
289 |
+
plot_bgcolor='#1e1e1e',
|
290 |
+
paper_bgcolor='#1e1e1e'
|
291 |
+
)
|
292 |
+
return fig
|
293 |
+
|
294 |
+
# If the DataFrame has a MultiIndex for columns, handle it
|
295 |
+
if isinstance(df.columns, pd.MultiIndex):
|
296 |
+
df.columns = df.columns.droplevel(1) if len(df.columns.levels) > 1 else df.columns
|
297 |
+
|
298 |
+
# Generate signals
|
299 |
+
df = generate_trading_signals(df)
|
300 |
+
|
301 |
+
# Last 360 days for plotting (or all data if less than 360 days)
|
302 |
+
df_last_360 = df.tail(min(360, len(df)))
|
303 |
|
304 |
+
# Plot simplified signals
|
305 |
+
fig_individual = plot_simplified_signals(df_last_360, ticker)
|
306 |
+
|
307 |
+
return fig_individual
|
308 |
+
|
309 |
+
except Exception as e:
|
310 |
+
# Create error figure
|
311 |
+
fig = go.Figure()
|
312 |
+
fig.add_annotation(
|
313 |
+
text=f"Error: {str(e)}",
|
314 |
+
xref="paper", yref="paper",
|
315 |
+
x=0.5, y=0.5,
|
316 |
+
showarrow=False,
|
317 |
+
font=dict(color="#ff5252", size=16)
|
318 |
+
)
|
319 |
+
fig.update_layout(
|
320 |
+
plot_bgcolor='#1e1e1e',
|
321 |
+
paper_bgcolor='#1e1e1e',
|
322 |
+
font=dict(color='white')
|
323 |
+
)
|
324 |
+
return fig
|
325 |
+
|
326 |
+
# Define Gradio interface with improved styling
|
327 |
+
custom_theme = gr.themes.Monochrome(
|
328 |
+
primary_hue="blue",
|
329 |
+
secondary_hue="purple",
|
330 |
+
neutral_hue="gray",
|
331 |
+
radius_size=gr.themes.sizes.radius_sm,
|
332 |
+
font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"],
|
333 |
+
)
|
334 |
+
|
335 |
+
with gr.Blocks(theme=custom_theme) as demo:
|
336 |
+
gr.Markdown("# Simplified Stock Market Signal Analysis")
|
337 |
+
gr.Markdown("This app analyzes stock data and visualizes trading signals based on multiple technical indicators with a clean, simplified display.")
|
338 |
+
|
339 |
+
with gr.Row():
|
340 |
+
with gr.Column(scale=1):
|
341 |
+
ticker_input = gr.Textbox(
|
342 |
+
label="Stock Ticker Symbol",
|
343 |
+
placeholder="e.g., AAPL, NVDA, MSFT",
|
344 |
+
value="NVDA"
|
345 |
+
)
|
346 |
+
start_date_input = gr.Textbox(
|
347 |
+
label="Start Date",
|
348 |
+
placeholder="YYYY-MM-DD",
|
349 |
+
value="2022-01-01"
|
350 |
+
)
|
351 |
+
end_date_input = gr.Textbox(
|
352 |
+
label="End Date",
|
353 |
+
placeholder="YYYY-MM-DD",
|
354 |
+
value="2026-01-01"
|
355 |
+
)
|
356 |
+
|
357 |
+
# Create a submit button with styling
|
358 |
+
button = gr.Button("Analyze Stock", variant="primary")
|
359 |
|
360 |
+
# Output: Signals plot
|
361 |
+
signals_output = gr.Plot(label="Technical Analysis & Trading Signals")
|
362 |
+
|
363 |
+
# Link button to function
|
364 |
+
button.click(
|
365 |
+
stock_analysis,
|
366 |
+
inputs=[ticker_input, start_date_input, end_date_input],
|
367 |
+
outputs=[signals_output]
|
368 |
+
)
|
369 |
|
370 |
+
gr.Markdown("""
|
371 |
+
## 📈 Trading Signals Legend
|
372 |
+
- **Green Triangle Up (▲)** indicates Buy signals
|
373 |
+
- **Red Triangle Down (▼)** indicates Sell signals
|
374 |
+
- Hover over signals to see which indicators triggered them
|
375 |
|
376 |
+
## 🔍 Indicators & Thresholds
|
377 |
+
- **SMA**: Simple Moving Average (30 & 100 days) - 30% threshold
|
378 |
+
- **MACD**: Moving Average Convergence Divergence (12, 26, 9)
|
379 |
+
- **RSI**: Relative Strength Index (Buy < 12, Sell > 95)
|
380 |
+
- **BB**: Bollinger Bands (with 1% buffer)
|
381 |
+
- **Stochastic**: Stochastic Oscillator (Buy < 5, Sell > 99)
|
382 |
+
- **CMF**: Chaikin Money Flow (Buy < -0.4, Sell > 0.4)
|
383 |
+
- **CCI**: Commodity Channel Index (Buy < -195, Sell > 195)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
|
385 |
+
## 💡 Visualization Improvements
|
386 |
+
- Simple line chart for price
|
387 |
+
- Consolidated buy/sell signals
|
388 |
+
- Reduced visual clutter
|
389 |
+
- Enhanced hover information
|
390 |
+
- Interactive time range selection
|
391 |
+
""")
|
|
|
392 |
|
393 |
# Launch the interface
|
394 |
+
demo.launch()
|