import gradio as gr import pandas as pd import yfinance as yf import plotly.graph_objects as go import numpy as np # Functions for calculating indicators def calculate_sma(df, window): return df['Close'].rolling(window=window).mean() def calculate_ema(df, window): return df['Close'].ewm(span=window, adjust=False).mean() def calculate_macd(df): short_ema = df['Close'].ewm(span=12, adjust=False).mean() long_ema = df['Close'].ewm(span=26, adjust=False).mean() macd = short_ema - long_ema signal = macd.ewm(span=9, adjust=False).mean() return macd, signal def calculate_rsi(df): delta = df['Close'].diff() gain = (delta.where(delta > 0, 0)).rolling(window=14).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean() rs = gain / loss rsi = 100 - (100 / (1 + rs)) return rsi def calculate_bollinger_bands(df): middle_bb = df['Close'].rolling(window=20).mean() upper_bb = middle_bb + 2 * df['Close'].rolling(window=20).std() lower_bb = middle_bb - 2 * df['Close'].rolling(window=20).std() return middle_bb, upper_bb, lower_bb def calculate_stochastic_oscillator(df): lowest_low = df['Low'].rolling(window=14).min() highest_high = df['High'].rolling(window=14).max() slowk = ((df['Close'] - lowest_low) / (highest_high - lowest_low)) * 100 slowd = slowk.rolling(window=3).mean() return slowk, slowd def calculate_cmf(df, window=20): mfv = ((df['Close'] - df['Low']) - (df['High'] - df['Close'])) / (df['High'] - df['Low']) * df['Volume'] cmf = mfv.rolling(window=window).sum() / df['Volume'].rolling(window=window).sum() return cmf def calculate_cci(df, window=20): typical_price = (df['High'] + df['Low'] + df['Close']) / 3 sma = typical_price.rolling(window=window).mean() mean_deviation = (typical_price - sma).abs().rolling(window=window).mean() cci = (typical_price - sma) / (0.015 * mean_deviation) return cci # Function to adjust thresholds based on sensitivity def adjust_thresholds_by_sensitivity(sensitivity): """ Convert a single sensitivity value (1-10) to appropriate thresholds 1 = Most sensitive (more signals) 10 = Least sensitive (fewer, stronger signals) """ # Map sensitivity to thresholds if sensitivity == 1: # Most sensitive return { 'SMA': 5, 'RSI_lower': 30, 'RSI_upper': 70, 'BB': 0.5, 'Stochastic_lower': 20, 'Stochastic_upper': 80, 'CMF': 0.1, 'CCI': 100 } elif sensitivity == 10: # Least sensitive return { 'SMA': 50, 'RSI_lower': 5, 'RSI_upper': 95, 'BB': 5, 'Stochastic_lower': 5, 'Stochastic_upper': 95, 'CMF': 0.6, 'CCI': 300 } else: # Linear interpolation between extremes factor = (sensitivity - 1) / 9 # 0 to 1 return { 'SMA': int(5 + (50 - 5) * factor), 'RSI_lower': int(30 - (30 - 5) * factor), 'RSI_upper': int(70 + (95 - 70) * factor), 'BB': 0.5 + (5 - 0.5) * factor, 'Stochastic_lower': int(20 - (20 - 5) * factor), 'Stochastic_upper': int(80 + (95 - 80) * factor), 'CMF': 0.1 + (0.6 - 0.1) * factor, 'CCI': int(100 + (300 - 100) * factor) } def generate_trading_signals(df, thresholds, enabled_signals): # Calculate various indicators df['SMA_30'] = calculate_sma(df, 30) df['SMA_100'] = calculate_sma(df, 100) df['EMA_12'] = calculate_ema(df, 12) df['EMA_26'] = calculate_ema(df, 26) df['RSI'] = calculate_rsi(df) df['MiddleBB'], df['UpperBB'], df['LowerBB'] = calculate_bollinger_bands(df) df['SlowK'], df['SlowD'] = calculate_stochastic_oscillator(df) df['CMF'] = calculate_cmf(df) df['CCI'] = calculate_cci(df) # Initialize all signals as 0 (no signal) signal_columns = ['SMA_Signal', 'MACD_Signal', 'RSI_Signal', 'BB_Signal', 'Stochastic_Signal', 'CMF_Signal', 'CCI_Signal'] for col in signal_columns: df[col] = 0 # Only generate signals for enabled indicators # SMA Signal if 'SMA' in enabled_signals: sma_threshold = thresholds['SMA'] df['SMA_Diff_Pct'] = (df['SMA_30'] - df['SMA_100']) / df['SMA_100'] * 100 df['SMA_Signal'] = np.where(df['SMA_Diff_Pct'] > sma_threshold, 1, 0) df['SMA_Signal'] = np.where(df['SMA_Diff_Pct'] < -sma_threshold, -1, df['SMA_Signal']) # MACD Signal if 'MACD' in enabled_signals: macd, signal = calculate_macd(df) df['MACD'] = macd df['MACD_Signal_Line'] = signal df['MACD_Signal'] = np.select([(macd > signal) & (macd.shift(1) <= signal.shift(1)), (macd < signal) & (macd.shift(1) >= signal.shift(1))], [1, -1], default=0) # RSI Signals if 'RSI' in enabled_signals: rsi_lower = thresholds['RSI_lower'] rsi_upper = thresholds['RSI_upper'] df['RSI_Signal'] = np.where(df['RSI'] < rsi_lower, 1, 0) df['RSI_Signal'] = np.where(df['RSI'] > rsi_upper, -1, df['RSI_Signal']) # Bollinger Bands if 'BB' in enabled_signals: bb_buffer = thresholds['BB'] / 100 # Convert percentage to decimal df['BB_Signal'] = np.where( (df['Close'] < df['LowerBB'] * (1 - bb_buffer)) & (df['Close'].shift(1) < df['LowerBB'].shift(1) * (1 - bb_buffer)) & (df['Close'].shift(2) < df['LowerBB'].shift(2) * (1 - bb_buffer)), 1, 0 ) df['BB_Signal'] = np.where( (df['Close'] > df['UpperBB'] * (1 + bb_buffer)) & (df['Close'].shift(1) > df['UpperBB'].shift(1) * (1 + bb_buffer)) & (df['Close'].shift(2) > df['UpperBB'].shift(2) * (1 + bb_buffer)), -1, df['BB_Signal'] ) # Stochastic signals if 'Stochastic' in enabled_signals: stoch_lower = thresholds['Stochastic_lower'] stoch_upper = thresholds['Stochastic_upper'] df['Stochastic_Signal'] = np.where((df['SlowK'] < stoch_lower) & (df['SlowD'] < stoch_lower), 1, 0) df['Stochastic_Signal'] = np.where((df['SlowK'] > stoch_upper) & (df['SlowD'] > stoch_upper), -1, df['Stochastic_Signal']) # CMF Signals if 'CMF' in enabled_signals: cmf_threshold = thresholds['CMF'] df['CMF_Signal'] = np.where(df['CMF'] > cmf_threshold, -1, np.where(df['CMF'] < -cmf_threshold, 1, 0)) # CCI Signals if 'CCI' in enabled_signals: cci_threshold = thresholds['CCI'] df['CCI_Signal'] = np.where(df['CCI'] < -cci_threshold, 1, 0) df['CCI_Signal'] = np.where(df['CCI'] > cci_threshold, -1, df['CCI_Signal']) return df def plot_simplified_signals(df, ticker, enabled_signals): # Create a figure with improved styling fig = go.Figure() # Use a line chart instead of candlestick for simplicity fig.add_trace(go.Scatter( x=df.index, y=df['Close'], mode='lines', name='Price', line=dict(color='#26a69a', width=2), opacity=0.9 )) # Add SMA lines fig.add_trace(go.Scatter( x=df.index, y=df['SMA_30'], mode='lines', name='SMA 30', line=dict(color='#42a5f5', width=1.5, dash='dot') )) fig.add_trace(go.Scatter( x=df.index, y=df['SMA_100'], mode='lines', name='SMA 100', line=dict(color='#5e35b1', width=1.5, dash='dot') )) # Add bollinger bands with lighter appearance if 'BB' in enabled_signals: fig.add_trace(go.Scatter( x=df.index, y=df['UpperBB'], mode='lines', name='Upper BB', line=dict(color='rgba(250, 250, 250, 0.3)', width=1), showlegend=True )) fig.add_trace(go.Scatter( x=df.index, y=df['LowerBB'], mode='lines', name='Lower BB', line=dict(color='rgba(250, 250, 250, 0.3)', width=1), fill='tonexty', fillcolor='rgba(173, 216, 230, 0.1)', showlegend=True )) # Group signals by type to reduce legend clutter buy_signals_df = pd.DataFrame(index=df.index) sell_signals_df = pd.DataFrame(index=df.index) signal_names = [f"{signal}_Signal" for signal in enabled_signals] # Collect all buy and sell signals for signal in signal_names: buy_signals_df[signal] = np.where(df[signal] == 1, df['Close'], np.nan) sell_signals_df[signal] = np.where(df[signal] == -1, df['Close'], np.nan) # Add hover data buy_hovers = [] for idx in buy_signals_df.index: signals_on_day = [col.split('_')[0] for col in buy_signals_df.columns if not pd.isna(buy_signals_df.loc[idx, col])] if signals_on_day: hover_text = f"Buy Signals: {', '.join(signals_on_day)}
Date: {idx.strftime('%Y-%m-%d')}
Price: ${df.loc[idx, 'Close']:.2f}" buy_hovers.append((idx, df.loc[idx, 'Close'], hover_text)) sell_hovers = [] for idx in sell_signals_df.index: signals_on_day = [col.split('_')[0] for col in sell_signals_df.columns if not pd.isna(sell_signals_df.loc[idx, col])] if signals_on_day: hover_text = f"Sell Signals: {', '.join(signals_on_day)}
Date: {idx.strftime('%Y-%m-%d')}
Price: ${df.loc[idx, 'Close']:.2f}" sell_hovers.append((idx, df.loc[idx, 'Close'], hover_text)) # Add buy signals (single trace for all buy signals) if buy_hovers: buy_x, buy_y, buy_texts = zip(*buy_hovers) fig.add_trace(go.Scatter( x=buy_x, y=[y * 0.995 for y in buy_y], # Position slightly below price for visibility mode='markers', marker=dict(symbol='triangle-up', size=10, color='#00e676', line=dict(color='white', width=1)), name='Buy Signals', hoverinfo='text', hovertext=buy_texts )) # Add sell signals (single trace for all sell signals) if sell_hovers: sell_x, sell_y, sell_texts = zip(*sell_hovers) fig.add_trace(go.Scatter( x=sell_x, y=[y * 1.005 for y in sell_y], # Position slightly above price for visibility mode='markers', marker=dict(symbol='triangle-down', size=10, color='#ff5252', line=dict(color='white', width=1)), name='Sell Signals', hoverinfo='text', hovertext=sell_texts )) # Improve the layout with larger dimensions fig.update_layout( title=dict( text=f'{ticker}: Technical Analysis & Trading Signals', font=dict(size=24, color='white'), x=0.5 ), xaxis=dict( title='Date', gridcolor='rgba(255, 255, 255, 0.1)', linecolor='rgba(255, 255, 255, 0.2)' ), yaxis=dict( title='Price', side='right', gridcolor='rgba(255, 255, 255, 0.1)', linecolor='rgba(255, 255, 255, 0.2)', tickprefix='$' ), plot_bgcolor='#1e1e1e', paper_bgcolor='#1e1e1e', font=dict(color='white'), hovermode='closest', legend=dict( bgcolor='rgba(30, 30, 30, 0.8)', bordercolor='rgba(255, 255, 255, 0.2)', borderwidth=1, font=dict(color='white', size=10), orientation='h', yanchor='bottom', y=1.02, xanchor='center', x=0.5 ), margin=dict(l=50, r=50, b=100, t=100, pad=4), height=800, # Increased height width=1200 # Increased width ) # Add range selector for better time navigation fig.update_xaxes( rangeslider_visible=True, rangeselector=dict( buttons=list([ dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=3, label="3m", step="month", stepmode="backward"), dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="YTD", step="year", stepmode="todate"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all") ]), bgcolor='rgba(30, 30, 30, 0.8)', activecolor='#536dfe', font=dict(color='white') ) ) return fig def stock_analysis(ticker, start_date, end_date, sensitivity, # New simplified parameter use_sma, use_macd, use_rsi, use_bb, use_stoch, use_cmf, use_cci): try: # Download stock data from Yahoo Finance df = yf.download(ticker, start=start_date, end=end_date) # Check if data was retrieved if df.empty: fig = go.Figure() fig.add_annotation( text="No data found for this ticker and date range", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False, font=dict(color="white", size=16) ) fig.update_layout( plot_bgcolor='#1e1e1e', paper_bgcolor='#1e1e1e', height=800, width=1200 ) return fig # If the DataFrame has a MultiIndex for columns, handle it if isinstance(df.columns, pd.MultiIndex): df.columns = df.columns.droplevel(1) if len(df.columns.levels) > 1 else df.columns # Create list of enabled signals enabled_signals = [] if use_sma: enabled_signals.append('SMA') if use_macd: enabled_signals.append('MACD') if use_rsi: enabled_signals.append('RSI') if use_bb: enabled_signals.append('BB') if use_stoch: enabled_signals.append('Stochastic') if use_cmf: enabled_signals.append('CMF') if use_cci: enabled_signals.append('CCI') # If no signals are enabled, enable all by default if not enabled_signals: enabled_signals = ['SMA', 'MACD', 'RSI', 'BB', 'Stochastic', 'CMF', 'CCI'] # Get thresholds from sensitivity thresholds = adjust_thresholds_by_sensitivity(sensitivity) # Generate signals df = generate_trading_signals(df, thresholds, enabled_signals) # Last 360 days for plotting (or all data if less than 360 days) df_last_360 = df.tail(min(360, len(df))) # Plot simplified signals fig = plot_simplified_signals(df_last_360, ticker, enabled_signals) return fig except Exception as e: # Create error figure fig = go.Figure() fig.add_annotation( text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False, font=dict(color="#ff5252", size=16) ) fig.update_layout( plot_bgcolor='#1e1e1e', paper_bgcolor='#1e1e1e', font=dict(color='white'), height=800, width=1200 ) return fig # Define Gradio interface with improved styling custom_theme = gr.themes.Monochrome( primary_hue="blue", secondary_hue="purple", neutral_hue="gray", radius_size=gr.themes.sizes.radius_sm, font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"], ) with gr.Blocks(theme=custom_theme) as demo: gr.Markdown("# Technical Analysis") gr.Markdown("This app helps you analyze stocks with technical indicators and generates trading signals.") with gr.Row(): with gr.Column(scale=1): ticker_input = gr.Textbox( label="Stock Ticker Symbol", placeholder="e.g., AAPL, NVDA, MSFT", value="NVDA" ) start_date_input = gr.Textbox( label="Start Date", placeholder="YYYY-MM-DD", value="2022-01-01" ) end_date_input = gr.Textbox( label="End Date", placeholder="YYYY-MM-DD", value="2026-01-01" # Updated to current date ) gr.Markdown("### Choose Indicators") with gr.Row(): use_sma = gr.Checkbox(label="SMA", value=True) use_macd = gr.Checkbox(label="MACD", value=True) use_rsi = gr.Checkbox(label="RSI", value=True) use_bb = gr.Checkbox(label="Bollinger", value=True) use_stoch = gr.Checkbox(label="Stochastic", value=True) use_cmf = gr.Checkbox(label="CMF", value=True) use_cci = gr.Checkbox(label="CCI", value=True) gr.Markdown("### Signal Sensitivity") with gr.Row(): sensitivity = gr.Slider( label="Signal Sensitivity", minimum=1, maximum=10, step=1, value=5, info="1 = (sensitive), 10 = (strict)" ) # Create a submit button with styling button = gr.Button("Analyze Stock", variant="primary") # Output: Signals plot with increased height signals_output = gr.Plot(label="Technical Analysis & Trading Signals") # Link button to function with updated parameters button.click( stock_analysis, inputs=[ ticker_input, start_date_input, end_date_input, sensitivity, # Single threshold parameter use_sma, use_macd, use_rsi, use_bb, use_stoch, use_cmf, use_cci ], outputs=[signals_output] ) gr.Markdown(""" ## 📈 Trading Signals Legend - **Green Triangle Up (▲)** indicates Buy signals - **Red Triangle Down (▼)** indicates Sell signals - Hover over signals to see which indicators triggered them ## 🔍 Signal Sensitivity Explained - **Lower values (1-3)**: More frequent signals, good for short-term trading - **Medium values (4-6)**: Balanced approach, moderate number of signals - **Higher values (7-10)**: Fewer but potentially stronger signals, good for long-term investors ## 🛠️ Trading Strategy Tips - **Day Trading**: Use lower sensitivity with multiple indicators - **Swing Trading**: Use medium sensitivity with 3-4 indicators - **Long-term Investing**: Use higher sensitivity focusing on trend indicators - **Combine**: Using multiple indicators helps confirm signals and reduce false positives """) # Launch the interface demo.launch()